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Abstract Thermally-induced fluctuations of individual phospholipids in a bilayer
lipid membrane (BLM) are converted into collective motions due to the inter-
molecular interactions. Here, we demonstrate that transbilayer stochastic pores
can be generated via collective thermal movements (CTM). Using the elastic
theory of continuous media applied to smectic-A liquid crystals, we estimate the
pore radius and the energetic requirements for pore appearance. Three types of
thermally-induced transbilayer pores could be formed through BLMs: open and
stable, open and unstable, and closed. In most of the situations, two open and sta-
ble pores with different radii could be generated. Notably, the two pores have the
same generation probability. Unstable pores are possible to appear across thin bi-
layers that contain phospholipids with a large polar headgroup. Closed pores are
present throughout the cases that we have inspected. The effects of hydrophobic
thickness, polar headgroup size of phospholipids, temperature, surface tension,
and elastic compression on the pore formation and pore stability have been exam-
ined as well.
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Abbreviations a0, Cross-sectional area per phospholipid; B, Elastic coefficient of
BLM compression; Bs, Elastic coefficient of solvent layer compression; Bc, Elas-
tic coefficient of hydrophobic layer compression; BLM, Bilayer lipid membrane;
CTM, Collective thermal motion of phospholipids; CR, Compatibility range for
the pore formation; �EL, Energy variation due to pore linear contour change;
�ES, Energy variation due to pore surface change; �F , Deformation free energy
change per unit area of lipid bilayer; �Fc, Critical free energy barrier correspond-
ing to critical pore radius; γ , Surface tension coefficient; h, Half-thickness of hy-
drophobic domain; hl, Half-thickness of hydrophobic domain in the case of BLM
with solvent; hs, Half-thickness of solvent between the two monolayers; hp, Half-
thickness of polar headgroup domain; kB, Boltzmann’s constant; Kc, Curvature
elastic modulus; Kl , Elastic coefficient of splay distortion; λ, Deformation wave-
length of the lipid bilayer; λ0, Deformation wavelength λ that corresponds to Rmin

(see below, Rmin); l, The length of the arc around Oz axis; n, Unit vector (with vari-
able direction) of the deformation wave; N, Number of atoms in a phospholipid;
Nb, Number of covalent bonds in a phospholipid; Nc, Number of intra-molecular
constraints; Nm, Number of phospholipids involved in collective thermal motion;
rc, Critical radius of a transbilayer pore (maximum radius of a stable pore); rp,
Radius of the pore; Rmin (Rmax), Lowest (highest) value of the radius of the per-
turbed region able to generate stochastic transbilayer pores; r0, Radius of the pore
that corresponds to a perturbed region of radius Rmin (the radius of the most prob-
able pore); r, Radial variable of the deformation wave function, for the case of
cylindrical symmetry; R, Radius of the BLM perturbed region; σ , Line tension;
T, Absolute temperature; u (x, y, z) Position-dependent displacement from initial
unperturbed half-thickness of the membrane; us, Deformation of solvent layer.

1. Introduction

Phospholipids, as a major component of biological membranes, undergo three cat-
egories of random thermal movements: (i) they can diffuse freely in the bilayer
plane, thus conferring a fluid phase state to the membrane; (ii) they can also ex-
hibit self-oscillations and rotations around their longitudinal axes; (iii) they have
the ability to randomly fluctuate in a direction that is normally oriented, relative
to the lipid bilayer. Because of these features, the bilayer lipid membrane (BLM)
is a remarkable self-assembled and flexible structure that can experience a vari-
ety of conformational and dynamic transitions (Popescu and Rucareanu, 1992;
Sackmann, 1995; Shillcock and Seifert, 1998; Boal, 2001; Holthuis et al., 2003).
Furthermore, the artificial and natural BLMs are not perfect insulating systems,
but are permeable for water and electrolytes that diffuse across by a diversity of
transmembrane pores.

A stochastic transbilayer pore can form and grow, following an activated pro-
cess brought about by an external trigger. Examples include a short duration and
high amplitude electrical pulse (Winterhalter and Helfrich, 1987; Freeman et al.,
1994; Saulis, 1997; Bordi et al., 1999; Bordi et al., 2000; Neu et al., 2003; Neu
and Krassowska, 2003; Tieleman et al., 2003; Tieleman, 2004), random and bi-
ased thermal fluctuations of bilayer thickness (Popescu et al., 1991; Shillcock and



Bulletin of Mathematical Biology (2006) 68: 1231–1255 1233

Seifert, 1998; Marrink et al., 2001; Farago, 2003; Fournier and Joos, 2003; Loi-
son et al., 2004; Movileanu and Popescu, 2004; Farago and Santangelo, 2005), and
other drastic changes of the cellular environment (Shillcock and Boal, 1996; Mo-
roz and Nelson, 1997; Sung and Park, 1997; Sung and Park, 1998; Karatekin et al.,
2003; Leontiadou et al., 2004). The radius of the pores can vary over a wide range,
from nanometers to micrometers. Their lifetime is strongly dependent on both the
external trigger and intrinsic properties of the membrane. For example, the elec-
troporated pores in membranes can last several microseconds, but the thermally-
induced unstable pores show a much shorter lifetime of the order of a few nanosec-
onds (Marrink et al., 2001; Leontiadou et al., 2004). In an extreme situation, using
micropipette extrusion on vesicles, Needham and Zhelev have been able to show
the presence of large transbilayer pores with a duration of several seconds (Zhelev
and Needham, 1993).

Most of the models for pore formation in membranes are based on a simple
hypothesis proposed three decades ago by Litster (Litster, 1975; Sung and Park,
1997; Sung and Park, 1998). A stochastic pore may tend to open or close, depend-
ing on the forces acting on its boundary. The appearance of a circular pore of
radius rp in a membrane with surface tension coefficient γ is determined by the
presence of two competing energetic terms: a reduction in free energy by a sur-
face tension component (−πr2γ ), and an increase in free energy by a line tension
component (+2πrσ ). The line tension σ is caused by the hydrophobic property of
phospholipids, and contributes to the energy barrier height against pore formation.
The surface tension coefficient γ reduces the barrier height for pore formation.
Weaver and colleagues (Freeman et al., 1994) have used such a model for elec-
troporation experiments. The model accurately predicts that pores with a size be-
yond a critical value (rp > rc) evolve into an unstable structure and may lead to the
BLM rupture (Popescu and Margineanu, 1981; Shillcock and Boal, 1996; Fournier
and Joos, 2003), whereas smaller pores (rp < rc) undergo a resealing process
(Saulis, 1997; Farago, 2003; Popescu et al., 2003; Farago and Santangelo, 2005).
The model that we propose in this paper is, to some extent, similar to the afore-
mentioned approaches. However, the mechanistic details for pore formation differ
from the previous models, and are thoroughly presented in the next sections of this
article.

Particularly, the presence of BLM hydrophobic thickness fluctuations was
demonstrated both by theory (Hladky and Gruen, 1982: Hladky and Gruen, 1984)
and experiment (Benz et al., 1975). For a mixture of lipids in BLMs, a selective
association between phospholipids takes place, thus generating phospholipid
domains and local changes in hydrophobic thickness (Popescu, 1993; Popescu
et al., 1997). The phospholipid domain thickness is dependent on the length of the
hydrocarbon chain of phospholipids (Popescu and Victor, 1990; Movileanu and
Popescu, 1995; Movileanu and Popescu, 1996; Movileanu et al., 1997; Movileanu
et al., 1998; Movileanu and Popescu, 1998). The appearance of stochastic pores in
BLMs, due to thickness fluctuations, was first proposed by Popescu and colleagues
(Popescu et al., 1991).

The height of the energy barrier for membrane perforation due to this mecha-
nism is large (∼91 kBT) (Popescu et al., 1991), where kB and T are the Boltzmann
constant and absolute temperature, respectively. In this case, the geometrical
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profile of the pore, on a perpendicular plane to the BLM, is an elliptical toroidal
form. It was also shown that such a transmembrane pore could evolve into a sta-
ble state. The results obtained by this model were pretty surprising, because of
the short time scale for resealing of stochastic pores in membranes. Two years
later, Zhelev and Needham (Zhelev and Needham, 1993) created large and quasi-
stable pores in lipid bilayer vesicles, in accord with the previous model predic-
tion (Popescu et al., 1991). The membrane resistance to rupture (Popescu and
Margineanu, 1981; Shillcock and Boal, 1996), expressed in terms of a line ten-
sion for a large pore in bilayer vesicles, has been calculated by Moroz and Nel-
son (Moroz and Nelson, 1997). Notably, they have suggested a new procedure for
an accurate estimate of the line tension using data from Zhelev and Needham’s
experiment.

In this work, we propose a model for the appearance of either transient or sta-
ble transbilayer pores of nanoscopic dimensions, via thermally-induced thickness
fluctuations of the lipid membrane. For this purpose, we have used the elasticity
theory of continuous media (Huang, 1986; Helfrich and Jakobsson, 1990; Nielsen
et al., 1998; Nielsen and Andersen, 2000; May, 2000; Popescu et al., 2003) to de-
scribe the appearance of stochastic pores in a lipid membrane. A planar membrane
conformation that is stable at zero temperature can become unstable at nonzero
temperatures for certain intrinsic elastic membrane parameters and environmen-
tal stress conditions. We examine the stability of the membrane and determine the
conditions for transbilayer pore formation brought about by fluctuations of the
temperature-induced membrane thickness.

The appearance of stochastic transbilayer pores in lipid membranes due to ther-
mal fluctuations has been recently examined by several groups (Popescu et al.,
2003; Loison et al., 2004; Farago and Santangelo, 2005). Overall, we show that
these transbilayer thickness fluctuations promote the opening, or, in other situa-
tions, the closure of the already formed pores. Moreover, we establish the con-
ditions for which the membrane thickness fluctuations stabilize pores of a certain
size. The pore radius was estimated on a continuum model, assuming that the BLM
deformation free energy is equal to the total thermal energy of the phospholipids
that co-participate in the collective thermal motion (CTM).

2. Computing strategy

2.1. BLMs regarded as smectic liquid crystals

We briefly review the BLM physical properties that are relevant for the present
work: (i) the phospholipids are oriented along a favored direction, almost per-
pendicular or slightly tilted, relative to the BLM surface (Helfrich and Jakobsson,
1990; May, 2000; Kessel et al., 2001); (ii) the two monolayers have closely similar
thickness and can glide one along the other; (iii) there is no exchange of phos-
pholipids between the two monolayers. The translocation events from one mono-
layer to the other (e.g., flip–flop transitions) are very improbable (Popescu and
Victor, 1991b); (iv) there is a short-range order in each monolayer that is charac-
teristic of liquid crystals. This is because both the dipolar interactions between the
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Fig. 1 The local deformation, u, of a lipid bilayer produced by collective thermal motion. n(r):
the unitary vector, of molecules orientation. h is the lipid monolayer thickness.

neutral polar headgroups and the van der Waals-London interactions between the
hydrophobic chains are short-range in nature. All these properties are specific to a
smectic liquid crystal of A type (De Gennes, 1974; Huang, 1986).

2.2. Deformation free energy

For the reasons mentioned above, it is appropriate to describe the BLM me-
chanics by the continuous theory of a smectic liquid crystal of A type (Helfrich,
1973; Huang, 1986; Helfrich and Jakobsson, 1990; Popescu et al., 2003). Hereafter,
we consider only a homogenous and solvent-free BLM, unless otherwise stated.
In nematic liquid crystals, there are four types of deformations: a compression-
expansion component, a splay-, a twist-, and a bend-distortion component. The last
two are unfavorable in smectic liquid crystals (Huang, 1986). Therefore, the free
energy change is dominated by compression-expansion and splay deformation.
We assume that the upper BLM boundary undergoes a deformation displacement
given by u(x, y, z) = u(r) which is evaluated relative to the initial unperturbed po-
sition (Fig. 1).

In the case of a small deformation of the BLM accompanied by a large deforma-
tion wavelength, the change in deformation free energy per unit volume, accord-
ing to smectic liquid crystal theory, is given by the following formula (De Gennes,
1974):

�F(x, y, z) = 1
2

B
(

∂u
∂z

)2

+ 1
2

K1(div n)2 (1)

where B and Kl are the elastic coefficients of membrane compression and splay-
distortion, respectively. n is the unit vector of the deformation wave.

Because the lateral compression can be expressed as the first order Oz-axis
derivative, B can be calculated in such a way that the first term of Eq. (1) includes
both the transverse and longitudinal compressions. If we integrate Eq. (1) over the
BLM thickness (i.e., from 0 to 2h) and apply the boundary conditions and the con-
dition for minimum deformation free energy, then the expression for �F is given
by (Huang, 1986; Helfrich and Jakobsson, 1990; Popescu et al., 2003):

�F(x, y) = hB
(u

h

)2
+ hK1
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)2
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where h is the half-thickness of the hydrophobic domain of the lipid bilayer.
Taking into account the energy contribution due to the change in the surface

area of the BLM, one can obtain a complete expression for the BLM deformation
free energy per unit area (Huang, 1986; Helfrich and Jakobsson, 1990; Popescu
et al., 2003):

�F(x, y) = B
u2

h
+ hK1

(
∂2u
∂x2

+ ∂2u
∂y2

)2

+ γ

[(
∂u
∂x

)2

+
(

∂u
∂y

)2
]

(3)

where γ is the bilayer surface tension coefficient.
The elasticity theory, applied to the BLM, regarded as a continuous media, has

the advantage that it takes into consideration the intrinsic properties of the mem-
brane, characterized by the constants B, Kl , and γ . This was the primary moti-
vation for using elasticity theory to calculate the BLM free energy induced by a
surface perturbation.

2.3. BLM thickness fluctuations and pore appearance

There are the following interactions between phospholipids: (i) repulsion/ attrac-
tion between the charged headgroups; (ii) attraction between neutral headgroups
and (iii) attraction between the hydrophobic chains themselves. Because these in-
teractions are weak and the membrane fulfils the properties of a smectic liquid
crystal, the individual motions of the phospholipids in the normal direction on the
BLM surface, following a resonance proccess, may be transformed into a collective
thermal motion (CTM). This phenomenon can trigger local random changes in
the BLM thickness fluctuations. Hladky and Gruen (Hladky and Gruen, 1982)
have demonstrated that thickness fluctuations with intermediate deformation
wavelength of about 100 Å have a significant probability of occurrence. Here, we
show that CTM promotes stochastic BLM perforations (i.e., spontaneous thermo-
porations). The real deformation of a BLM may be decomposed into simple sinu-
soidal deformations. Therefore, we consider a local BLM deformation described
by a cosine function u(r), with a deformation wavelength λ and with its amplitude
h equal to the half-thickness of the hydrophobic domain:

u(r) = −h cos
2πr
λ

= −h cos(kr) (4)

where k = 2πr/λ represents the wave number.
The initial state of the BLM was considered to be that in which molecules do not

move at all (i.e., the initial temperature is 0 K). At this temperature, both surfaces
of the BLM are planar. By warming the BLM up, the phospholipids obtain kinetic
energy and their thermal motions will contribute to the BLM deformations. These
deformations are sometimes called “membrane undulations” or “membrane rip-
ples.” This phenomenon favours the occurrence of BLM thickness fluctuations.
Thus, the collective thermal energy must be equal to or greater than the bilayer
deformation free energy. Taking into account that the BLM deformation main-
tains a cylindrical symmetry, the above condition, for a perturbed patch of radius
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R, can be rewritten in polar coordinates (Popescu et al., 2003):

2π∫
0

dθ

R∫
0

r

[
B

u2

h
+ γ

(
∂u
∂r

)2

+ hK1

(
∂u
r∂r

+ ∂2u
∂r2

)2
]

dr

= Nmεc = π R2

a0
(3N − Nc)

kBT
2

. (5)

Here, Nm is the number of phospholipids involved in collective thermal motion,
N is the number of atoms of a phospholipid, Nc is the number of intra-molecular
constraints, εc is the mean kinetic energy of a phospholipid, kBT

2 is the mean kinetic
energy associated to a single molecular freedom degree, h is the half-thickness
of the lipid bilayer and a0 is the cross-sectional area of the polar headgroup of
phospholipids. For a polyatomic molecule, we have 3N − Nc = 6.

After integration over θ and multiplication of both terms of Eq. (5) by 2
π BhR2 ,

one obtains:

4
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[
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(
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]

dr − kBT

Ba0h
(3N − Nc) = 0.

(6)

Taking into account the expression for local BLM deformation, Eq. (4), the
derivatives from Eq. (6) are the following:

∂u
∂r

= kh sin(kr);
∂2u
∂r2

= k2h cos(kr). (7)

Using (4) and (7), the left side of Eq. (6) can be split into three terms defined by

T0 = 4
R2

R∫
0

r cos2(kr) − kBT

Ba0h
(3N − Nc) (8)

T1 = 4γ

hBR2

R∫
0

(kh)2r sin2(kr) dr (9)

T2 = 4K1

R2 B

R∫
0

r
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r
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]2

dr

= 4K1

R2 B

R∫
0

[
k2h2

r
sin2(kr) + k3h2 sin(2kr) + k4h2r cos2(kr)

]
dr . (10)
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Introducing the nondimensional parameters: α = kR and β = kh, one obtains
the following expressions for the aforementioned terms (Appendix A):

T0 = 1 + sin 2α

α
− 1 − cos 2α

2α2
− kBT

Ba0h
(3N − Nc) = c(α) (11)

T1 = γ

Bh

(
1 − sin 2α

α
+ 1 − cos 2α

2α2

)
β2 = b(α)β2 (12)

T2 = K1

Bh2

(
1 + sin 2α

α
+ 3

1 − cos 2α

2α2
+ 4

α2

1∫
0

sin2(αs)
s

ds
)

β4

= a(α)β4. (13)

Taking into account the notations (11)–(13), Eq. (6) can be rewritten

a(α)β4 + b(α)β2 + c(α) = 0. (14)

Certainly, Eq. (14) is a very complex relation, yielding an implicit formula for λ

and R. However, one can use it to obtain their parametrical representations.
Equation (14) is an algebraic relation for β as a function of the parameter α.

Since the functions a(α) and b(α) are always positive, Eq. (14) has real solutions
only if the function c(α) is negative. If these conditions are simultaneously fulfilled,
we get a single positive solution:

λ(α) = 2πh

(√
2a(α)

−b (α) +
√

b2(α) − 4a(α)c(α)

)

R(α) = yλ(α)
2π

.

(15)

All the results were obtained by the assumption that the deformation free en-
ergy is equal to the total thermal energy of the molecules from the patch of a
radius R that co-participate in the CTM. More precisely, the results were obtained
by solving Eq. (14) in each particular case.

2.4. Choice of BLM parameters

In this section, we show the conditions under which the thermally-induced thick-
ness fluctuations of the BLM hydrophobic core can generate transbilayer pores.
The compressibility coefficient B, obtained by Hladky and Gruen (Hladky and
Gruen, 1982) from the experimental data of White (White, 1978), is equal to
5.4 × 107 Nm−2. The BLM surface area occupied by a single phospholipid is
39 Å2 (Popescu and Victor, 1991a), while the surface tension coefficient γ is
8 × 10−4 Nm−1 (Neher and Eibl, 1977; Nielsen et al., 1998). The splay coefficient
K1 was obtained from the experimental data by using the curvature elastic mod-
ulus Kc = (2.8–6.5) × 10−20 J (Engelhardt et al., 1985), in the case of lecithin vesi-
cles. Thus, from K1 = Kc/2h (Schneider et al., 1984), one can easily obtain the
splay coefficient, implemented in Eq. (14). Because the vesicle thickness used for
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the experimental measurement of Kc was 30 Å, then K1 is in the range from 9 to
22 × 10−12 N.

The BLM, as characterized by the parameters 2h = 31 Å, a0 = 39 Å2, K1 =
9 × 10−12 N, B = 5.4 × 107 Nm−2, γ = 15 × 10−4 Nm−1 and T = 300 K, will be con-
sidered as the reference BLM. The curve that corresponds to the reference BLM
was marked with “0.”

3. Results and discussion

3.1. Types of pores and their stability

3.1.1. Types of pores
In order to generate transbilayer pores, the CTM must employ the phospholipids
from a BLM patch with a radius R in the range [Rmin, Rmax]. We simply call this
domain a compatibility range (CR) for the pore formation. We show a generalized
scheme (Fig. 2) for the dependence of the pore radius rp (Fig. 2A), and BLM de-
formation wavelength λ (Fig. 2B), on the CTM radius R. Very interestingly, in
most of the cases examined in this work, the BLM deformation wavelength λ is
not a one-to-one function for all values of R of the perturbed patch of the CR. In
other words, there is a sub-domain of R, such that for each value of R, Eq. (14)
gives two values for λ (Fig. 2). If we consider λ0 to be the wavelength value corre-
sponding to Rmin, then the point (Rmin, λ0) on the graph of λ versus R is the nearest
point to the λ axis. This point divides each curve λ = λ(R) into two parts: an upper
and a lower branch. Taking into account that the pore radius is a monotonically
increasing function of the BLM deformation wavelength, it follows that a pore can
be generated for each λ value.

The BLM surface perturbation with a radius Rmin is induced by the CTM with
the lowest number of phospholipids. The deformation free energy reaches a mini-
mum at R = Rmin, and the pore generated by this perturbation is the most proba-
ble pore, with radius denoted as r0. The pores generated by the BLM deformation
wavelength with λ > λ0 will have radii rp > r0, whereas the pores generated by the
deformations with λ < λ0 will have rp < r0.

First, let us consider R for which the function λ = λ(R) is not a one-to-one
function. In Fig. 2, R values are in the range (Rmin, Rc2]. As each value of R can
generate two BLM deformations with different wavelengths, then two transbilayer
pores with different radii may be created.

Second, let us now consider R for which the function λ = λ(R) is a one-to-one
function. This occurs when the values of R pertain to the range (Rc2, Rmax]. In
this case, each R corresponds to a single λ, and a single pore could be generated
(Fig. 2).

3.1.2. Pore stability
A legitimate question which arises is whether such a stochastic pore is stable or un-
stable. Generally, the stability criterion is given by the Litster model. According to
Litster’s model (Litster, 1975), the deformation free energy of a pore with radius
rp, is equal to �F = 2πrp(σ − rpγ /2), and the critical free energy barrier for which
the radius of the pore attains a critical value rc = σ

γ
= l

2 ≈ h (see Appendix B) is
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Fig. 2 The dependence on the BLM deformation wavelength, λ, and pore radius, rp on the per-
turbation radius R (see comment in the main text).

�Fc = πγ l2

4 ≈ πγ h2. Therefore, if the pore radius is smaller than the critical value
rc, the force on the pore boundary is inward, the pore radius decreases and the
pore reseals. In this case, one says that the membrane is stable. By contrast, if the
pore radius is greater than rc, the pore radius increases indefinitely, thus evolving
to BLM rupture (Popescu and Margineanu, 1981; Winterhalter and Helfrich, 1987;
Saulis, 1997; Partenskii et al., 1998). In this case, one says that the membrane is un-
stable. From the point of view of the pore state we can say that in the first case, the
pore radius goes towards zero (but the pore may not disappear), and in the second
case the pore radius increases indefinitely. In addition, in the first case the pore
radius may not decrease to zero. Rather, it may approach a certain stable value,
different from zero. In our opinion, in the first case the pore will be stable (open
or closed), whereas in the second case the pore is open and unstable. Because
the approach presented in this paper does not imply a condition to discriminate
between stable and unstable pores, we use the same formalism for describing the
pores generated by surface defects induced by lateral thermal motion.

3.1.3. States of transbilayer pores
The transbilayers pores formed after bilayer perforation may be open (rp > 0) or
closed (rp ≤ 0). The size of the bilayer patch covered by the CTM may be smaller
then λ/4 (Fig. 3a) or greater then λ/4 (Fig. 3b and 3c). By equating the bilayer
volume involved in deformation before and after perforation, one obtains the pore
radius (Popescu et al., 2003). If the pore radius has a positive value (rp > 0), the
pore is in an open state (Figs. 3a, 3b, and 4a). If the solution for pore radius has a
negative value (rp ≤ 0), the pore is in a closed state (Figs. 3c and 4b). In fact, its
radius is equal to zero.
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Fig. 3 The perforation of the locally-deformed lipid bilayer due to thickness fluctuations induced
by CTM. (a) R ≤ λ/4, only open pores may appear in this case. When R ≥ λ/4, open pores can be
generated (b) for nearly all values of λ for which λ/4 ≤ R. Sometimes, for the lowest values of λ,
closed pores with a radius rp ≤ 0 can be generated (c). These λ values are marked on the bottom
end of curves λ = λ(R) from Figs. 5 and 6. Area marked by vertical lines: the volume occupied by
the lipid molecules participating to CTM, just before the BLM perforation. Grey area: the volume
occupied by the lipid molecules participating to CTM, after the BLM perforation. The pore radius
is inferred from the equality of these two volumes.
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Fig. 4 Two types of transbilayer stochastic pores generated by the BLM thickness fluctuations:
(a) open pore; (b) closed pore. The radius of the pore was indicated by rp. Each phospholipid
molecule is represented by its headgroup (a black circle) attached to two wiggle hydrophobic tails.

We consider that the pores are stable if their radii, rp are smaller than the half-
thickness of the hydrophobic domain (rp < h). In conclusion, one can say that the
CTM can generate three types of transbilayer stochastic pores: stable (open or
closed/zippered) and unstable (open) (Fig. 4). The unstable open pores (i.e., with
rp > h) evolve to BLM rupture, because their radii may increase indefinitely.

3.2. Effects of the phospholipid chain length

In this work, we consider three BLMs with values for the hydrophobic thickness 2h
of 21 Å, 31 Å, and 41 Å, respectively, unless otherwise stated. Taking into account
that the half-thickness of the polar headgroup layer, hp, is about 5 Å, then the
BLMs have a full thickness of 31 Å, 41 Å and 51 Å, respectively.

The dependences of the BLM deformation wavelength, λ, and pore radius, rp,
on the size of perturbed region, R, are represented in Fig. 5.

For 2h = 21 Å, the dependence of the BLM deformation wavelength, λ, on the
radius R is a decreasing function, which means that a single pore can be gener-
ated. This transbilayer pore may be either open, with its radius lower than 10 Å, or
closed (data not shown here).

In contrast with thin bilayers, for 2h = 31 Å, λ is no longer a on–to-one function
for the entire CR (Fig. 5, curve 0). For each R (excepting R = Rmin) Eq. (14) gives
two solutions for λ. As discussed above, a pore can be generated with either of the
two different geometrical states, but with the same deformation free energy. For
the case of reference BLM thickness, Rmin = 25 Å corresponds to λ0 = 88 Å and
r0 ≈ 12 Å (Fig. 5B, curve 0). For deformation wavelengths lower than λ0, the pore
radius, rp, is lower than r0. For deformation wavelengths greater than λ0, the pore
radius is situated in the range 12–15 Å. For deformation wavelengths belonging
to lower branch of curve, corresponding to non one-to-one function, the radii of
the pores satisfy the condition: 4 Å ≤ rp ≤ 12 Å. Both of these states are stable,
because r0 is always smaller than rc. For λ that corresponds to values located on
the lower branch of the graph λ = λ(R) (Fig. 5A, curve 0), either a single open
and stable pore with radius shorter than 4 Å, or a closed pore can be generated
(Fig. 5A and 5B, curve 0).
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Fig. 5 Dependence of the BLM deformation wavelength λ (A) and of the pore radius, rp, on the
perturbation radius, R (B). Curves marked with zero (0) are describing reference BLM; curves
1, hydrophobic thickness 2h = 40.5 Å; curves 2, the phospholipid cross-sectional area a0 = 45 Å2;
curves 3, the absolute temperature of 320 K; curves 4, the elastic compression coefficient B =
2.0 × 107 Nm−2; curves 5, elastic splay coefficient, K1 = 22 × 10−12 N. The region from each plot
situated at the end of the lower branch (indicated by scattered graph) in A corresponds to closed
transbilayer pores. The other parameters of the BLM in plots 1–6 are equal to the values of the
reference BLM (2h = 31 Å, a0 = 39 Å2, T = 300 K, B = 5.4 × 107 Nm−2, K1 = 9 × 10−12 N, γ =
15 × 10−4 Nm−1).

For a bilayer with 2h = 41 Å, several types of pores can be generated (Fig. 5A,
curve 1). For λ0 ≈ 115 Å and Rmin ≈ 35 Å, we found that the most probable pore
radius is r0 ≈ 11 Å. If λ is greater than λ0 (Fig. 5A, curve 1, upper branch), the
pore is stable and rp > r0 (Fig. 5B, curve 1, upper branch). If λ is smaller than λ0

(Fig. 5A, curve 1, lower branch), two open and stable pores with two different
geometrical stable states may be generated: narrow pores with radii, rp < 11 Å,
and closed pores. The model also predicts that if λ is greater than 130 Å, with λ(R)
located on the upper branch of the graph (Fig. 5A, curve 1), the pores are wide
and have only a single state. The transbilayer pores generated by the deformation
wavelengths greater than 130 Å will be in a stable state, if their radii are shorter
than the critical radius of 20 Å. If their radii are longer than 20 Å, they will evolve
to the BLM rupture (Popescu and Margineanu, 1981; Winterhalter and Helfrich,
1987; Saulis, 1997; Partenskii et al., 1998).
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3.3. Effects of cross-sectional area of the polar headgroups

The area of the BLM surface occupied by a single molecule depends on the degree
of hydration and on the tilting angle made by phospholpid molecule axis with the
BLM plane. The polar headgroup size can influence the parameters of Eq. (14),
particularly the elastic compressibility, B, and the surface tension coefficient, γ

(see above). We examined a BLM with the thickness of the reference BLM, but
with a value for greater cross-sectional area of the polar headgroup of 45 Å2. In
Fig. 5, curve 2, for a0 = 45 Å2, a new combination of pore states can be generated,
compared to the case for which the cross-sectional area value is a0 = 39 Å2 (the
reference BLM). For Rmin < R < 28 Å, we found that the pore can be either closed
or open. In the latter case, the pore radius is smaller than the critical radius of
15 Å. For R > 28 Å, the pore can be stable and closed, or it can be unstable, thus
triggering the BLM rupture.

The number of phospholipids co-participating in the BLM perturbation de-
creases with an increase in temperature, because the thermal energy is the unique
source of energy attributed to the BLM deformation. Therefore, the probability
of transbilayer pore generation increases with the temperature. This conclusion is
confirmed by the solutions of Eq. (14) for the reference BLM, for two tempera-
tures, 300 and 320 K, below the phase transition temperature of the BLM (Fig. 5,
curves 0 and 3, respectively). The temperature enhancement alters the narrow
pore when the conditions are favorable for generation of the two pores. The mini-
mum radius of the narrow pore increases from 4 to 8 Å. Therefore, the increase in
temperature affects only the radius of the stable pore that has an open state.

3.4. Effects of the elastic compression and splay

Compressibility properties have a significant effect on the transbilayer pore forma-
tion. If Eq. (14) is solved for B = 2 × 107 Nm−2, then λ is a monotonically decreas-
ing function of R (Fig. 5A, curve 4), which eliminates the possibility of pore ap-
pearance with two geometric states. The pores are either open, with a short radius
or closed. A change in compression elastic constant from 5 × 107 to 2 × 107 Nm−2

determined a shape distortion of the curve λ = λ(R). There is a critical value (Bc ≈
4 × 107 Nm−2), beyond which these types of changes occur. For B greater than Bc,
the deformation wavelength dependence on the perturbed region radius, R, does
not have a one-to-one correspondence. From Fig. 5, curve 4, we can infer that only
the curve “branch” of the higher values of the wavelength is influenced by the
increase in compression elastic constant. For B values smaller than Bc, the depen-
dence of the wavelength λ on the perturbed region radius R becomes a one-to-one
function, and the range of the wavelength spectrum is narrowed, as B decreases.

If the value of the splay elastic constant of the reference BLM (K1 = 9 ×
10−12 N) is replaced by a maximum value of K1 = 22 × 10−12 N, then R, λ, and
rp are shifted towards higher values (Fig. 5A, curve 5) as compared with the ref-
erence BLM. Taking into account that the number of molecules involved in CTM
is higher when K1 = 22 × 10−12 N, then the transbilayer pore appearance is a less
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favourable process. The shortest radius of perturbation produced by the CTM is
Rmin = 30 Å, which corresponds to a deformation wavelength of 108 Å.

3.5. Effects of lipid bilayer hydration

In order to examine the hydration effect, we selected two sets of BLMs. The
results are plotted in Fig. 6. The first set contains the following: (a) the refer-
ence unhydrated BLM (2h = 31 Å, a0 = 39 Å2, curve 0); (b) the hydrated BLM
with the same hydrophobic thickness (2h = 31 Å, a0 = 59 Å2, curve 1), designated
as hydrated BLM; (c) the hydrated BLM with reduced hydrophobic thickness
(2h = 25 Å, a0 = 59 Å2, curve 2), designated as hydrated and thin BLM; (d) the
hydrated BLM for which one takes into account the two secondary effects of de-
crease of hydrophobic thickness and decrease of elastic compression (2h = 25 Å,
a0 = 59 Å2 and B = 5 × 106 Nm−1, curve 3). The hydrated BLM described in (d)
is designated as soft and thin hydrated BLM.

The second set of BLMs contains only two bilayers: (e) an unhydrated thicker
BLM (2h = 41 Å, a0 = 39 Å2, marked by “∗”), and (f) a partially hydrated BLM
(2h = 34 Å, a0 = 59 Å2, curve 4) (Rawicz et al., 2000). We found the following val-
ues of the most probable pore radius: (1) for the reference BLM, r0 = 12 Å (λ0 =
88 Å, Rmin = 25 Å), (2) for the hydrated BLM (curve 1), r0 = 6 Å (λ0 = 128 Å,
Rmin = 41 Å), (3) for the hydrated and thin BLM (curve 2), r0 = 10 Å (λ0 = 93 Å),
(4) for the soft and thin hydrated BLM (curve 3), r0 = 13 Å (λ0 = 85 Å, Rmin =
22 Å). Because the number of phospholipids involved in CTM is lower in the hy-
drated BLM than in the unhydrated one, we conclude that the probability of a
stochastic pore is higher in hydrated BLMs. For the modified BLM, due to all sec-
ondary effects of hydration (thinner and soft BLM), a single open and stable pore
(rp ≤ 13 Å) or a closed one can be generated (Fig. 6, curve 3). If the hydrated BLM
has a thick hydrophobic domain, then it is more resistant to the thermoporation.
This may be seen in Fig. 6, curves “∗” and “4,” corresponding to the BLM of the
second set. Overall, the probability of a stable pore increases with the hydration.
This is because the number of lipid molecules necessary for stable pore formation
decreases after BLM hydration. It is worth mentioning that the effect of a larger
polar headgroup (e.g., hydration of BLM) should be the same as the effect of a
lower temperature (Figs. 5 and 6).

3.6. Solvated BLMs

We consider a BLM that contains between its monolayers a non miscible solvent,
which is different from water. In this case, there are three layers: two layers are
formed by the lipid monolayers with liquid crystal properties and one layer is
formed by the solvent situated in between the two monolayers. The solvent thick-
ness is denoted by 2hs, and the hydrophobic chain thickness of each lipid mono-
layer is denoted by hl. The compression of a BLM due to solvent must be analyzed
in two cases:

1. The elastic deformation u is smaller than the half-thickness of the solvent
(u < hs). In this case, the BLM compression is mainly given by the solvent
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Fig. 6 Dependence of the BLM deformation wavelength λ (A) and of the pore radius, rp, on the
perturbation radius, R (B). Curves marked with zero (0) are describing reference BLM; curves
1, hydrated BLM with a high cross-sectional polar headgroup a0 = 59 Å2, 2h = 31 Å; curves 2,
hydrated BLM with 2h = 25 Å and a0 = 59 Å2; curves 3, hydrated BLM with 2h = 25.2 Å, a0 =
59 Å2 and B = 5 × 106 Nm−2 taking into account the change in the lateral compression; curves
marked with (∗), thin unhydrated BLM, with 2h = 40.5 Å and a0 = 39 Å2; curves 4, hydrated BLM
with 2h = 34 Å and a0 = 59 Å2. The region from each plot situated at the end of the lower branch
(indicated by scattered graph) from graph (A) corresponds to closed pores. The other parameters
of the lipid bilayer in plots 1–4 are equal to the values of the reference BLM (curves 0, see Fig. 5
or the main text).

compression. The resistance to compression between the two media is equiv-
alent to two serial resistances and the equivalent compressibility coefficient, B,
is given by the expression (Helfrich and Jakobsson, 1990):

B = Bs Bl

Bs + Bl
. (16)

Because the elastic compressibility coefficient of the solvent is smaller than that
for the lipid domain (Bs = 5.4 × 104 Nm−2 and Bl = 5.8 × 107 Nm−2) and be-
cause B is approximately equal to Bs, the free energy due to compression is
small. The compressed solvent runs laterally within the exterior region of com-
pression (Fig. 7a);

2. The deformation u is greater than the half-thickness of the solvent (hs < u <

hl + hs). In this case, the solvent compression is followed by the lipid monolayer
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Fig. 7 BLM deformations, u, in the presence of the solvent layer (2hs): (a) the magnitude of lipid
bilayer deformation is significantly reduced compared to half-thickness of the solvent layer. Com-
pression is due mainly to the solvent compression; (b) the magnitude of deformation is greater
than the half-thickness of the solvent layer. Compression is mainly generated within the hy-
drophobic domain of the BLM (hl). Grey is the region occupied by the solvent. Each phospholipid
molecule is represented by its headgroup (a black circle) attached to two wiggle hydrophobic tails.

compression (Fig. 7b), and will be presented below for transbilayer pore for-
mation (u is equal to h = hs + hl). The free energy change of the unit area,
due to BLM deformation can be calculated according to the following formula
(Popescu et al., 2003):

�F(x, y) = Bs
u2

s

hs
+ Bl

(u − us)2

h − hs
+ (h − hs)K1

(
∂2u
∂x2

+ ∂2u
∂y2

)2

+ γ

[(
∂u
∂x

)2

+
(

∂u
∂y

)2
]

(17)

where us represents the deformation of solvent layer.
The reference BLM has been modified by introducing between the two mono-

layers a nonmiscible solvent layer with thickness 2hs = 20 Å. As we can see in
Fig. 8A, curve 1, the wavelength λ = λ(R) is a monotonically decreasing function.
Therefore, a single stable pore can be generated. The pore has a larger radius than
that of the solvent-free reference BLM. The higher value of the pore radius results
because both the CTM and BLM deformation wavelength λ are greater.

Let us consider a BLM (Fig. 8A, curve 2) with a hydrophobic thickness of 10 Å
(hl = 10.3 Å), but with a similar solvent thickness (hs = 10 Å). Then we have a
BLM with a full thickness of 41 Å (Fig. 8A, curve 3) which was examined in one of
the previous sections (Fig. 5, curve 1). The presence of solvent increase has a very
important effect on the pore formation: the number of molecules involved in the
CTM is much smaller than it is in the case of the BLM with the same thickness, but
without solvent. In addition, the closed pores could not be generated in the pres-
ence of solvent. Interestingly, we found that the solvent increases the probability
of a stable pore, as well as the probability of the BLM stability. The generation
of unstable pores that will evolve to the BLM breakdown is ruled out. Taking
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Fig. 8 Dependence of the BLM deformation wavelength, λ (A) and of the pore radius, rp, on the
perturbation radius, R, in the presence of solvent (B). Curves marked with zero (0) are describing
the reference BLM, that is, without solvent (hs = 0); curves 1, the reference BLM that includes a
solvent layer with the thickness 2hs = 20 Å; curves 2, BLM with a total thickness equal to 41 Å, and
the solvent thickness represents 2hs = 20 Å; curves 3, BLM with the thickness equal to 4.5 Å and
with the solvent layer thickness (2hs = 20 Å) and an increased hydrophobic region (2hl = 31 Å).

into consideration that the solvent minimizes the coupling between the monolay-
ers (by minimizing the overlapping between the hydrophobic chains), we conclude
that the solvent has a favorable role on the BLM stability.

4. Summary and concluding remarks

There is significant evidence indicating that transient pores of nanoscopic di-
mensions can stochastically form and evolve in a planar lipid bilayer or a cell
membrane, following an activated process induced by an external trigger, such
as thermal fluctuations, transmembrane electrical potential, mechanical stress or
other changes in the cellular environment. Specifically, the mechanism of pore
formation by thermal fluctuations is not clearly understood, but is still a matter
of challenge and various controversies (Shillcock and Boal, 1996; Shillcock and
Seifert, 1998; Fournier and Joos, 2003; Farago, 2003; Loison et al., 2004; Farago
and Santangelo, 2005). Here, we demonstrate that the general theory of contin-
uous elastic media (Helfrich, 1973; Huang, 1986; Helfrich and Jakobsson, 1990;
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Partenskii et al., 1998) can predict, for a specific set of intrinsic bilayer parameters,
the generation of pores with different sizes and stabilities. The mechanism of the
pore formation is caused by thermally-induced thickness fluctuations (Hladky and
Gruen, 1982; Hladky and Gruen, 1984), thus involving the CTM of phospholipids
perpendicularly oriented on the BLM surface (Popescu et al., 2003; Movileanu
and Popescu, 2004). In this work, our major assumption is that the BLM defor-
mation free energy is equal to the total thermal energy of the phospholipids that
co-participate in the CTM and produce eventually the transbilayer pore. We did
not examine the probability of the pore formation, lifetime of the pore (e.g., “on”
and “off” rates), and the pore density. We plan to fully address these issues in a
future publication.

Interestingly, this model shows that a bilayer patch of radius R involved in a
CTM can produce two bilayer deformations with different wavelengths, one with
λ > λ0, and one with λ < λ0. These BLM deformations generate individual pores
with a radius r > r0, and r < r0, respectively. However, these distinct stochastic
pores do not appear simultaneously, and different cases are discussed in this paper.

The theory can be generally applied to other membranes that have a variety of
pores. In this case, the elastic coefficient of the BLM compression must be modi-
fied, as this depends strongly on the the presence of other pores in bilayer.

Values of the open pore radii, derived in this work, are in agreement with those
encountered in the literature, whereas the closed pore formation confirms an old
hypothesis concerning the existence of water “threads” into the hydrophobic re-
gion of the BLMs (Marrink et al., 2001; Tieleman et al., 2003; Leontiadou et al.,
2004;Tieleman, 2004).

Marrink and colleagues (Tieleman et al., 2003) have used molecular dynamics
(MD) simulations to detect, at an atomic level, the transient pore formation in
a lipid bilayer by mechanical stress and electric fields. Their simulations demon-
strated that the pore stability is strongly dependent on the loading rate in MD
simulations. The pores are stable at low loading rate, but they are unstable at high
loading rate. For high loading rates, an initial pore continue to grow until the bi-
layer is destabilized. The main reason for which their transient pores are unstable
is that the mechanical stress generates a significant BLM thinning at high surface
tensions. Marrink and co-workers have observed that the pore stability diagram
under mechanical stress can be split in two regimes (Leontiadou et al., 2004). Hy-
drophilic pores are stabilized for surface tensions lower than a critical threshold of
about 38 mN/m. The pores are unstable for surface tensions higher than this value.
In a recent paper, Tieleman presents a different molecular mechanism for pore
formation under applied electric field (Tieleman, 2004). The probability of pore
formation seems to be increased by the presence of local membrane defects in-
volving either water molecules or polar headgroups trapped into the hydrophobic
region of the bilayer. For electroporation, the pore formation is determined by the
presence of single-file like water defects penetrating into the bilayer and interact-
ing with the local electric fields. Interaction of the water molecules with the local
electric fields is an essential step for accelerating the process of pore formation
(Tieleman et al., 2003; Tieleman, 2004).

As presented in this work, the transbilayer pores can be generated, if the radius
of the CTM is in the range [Rmin, Rmax]. CTM, with a radius shorter than Rmin or
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longer than Rmax, produces BLM deformations with magnitudes lower than the
half-thickness of the bilayer, so that pore generation is ruled out. In many cases
examined in this paper, the pores can exhibit two geometrical states with small
or large pore possessing two physical properties: the large pore may be stable or
unstable, while the small may only be stable (open or closed, Fig. 2). However,
for a thin BLM, only a single type of pore can be generated. The complexity of
pore formation increases with the increase in bilayer thickness. The possibility of
two different types of pores is also ruled out when the elastic coefficient of BLM
compression is low. We found that the BLM stability is increased by the pres-
ence of hydration and nonmiscible solvent layers. From a thermodynamic point of
view, the two pore states, corresponding to the same R, exhibit similar generation
probability. As we mentioned above, the particular values of the deformation
wavelength λ indicate which of the two states of the pore will be generated. Taking
into account that the thermal energy necessary to induce the BLM deformation is
proportional to R2, we conclude that the closer to Rmin is the CTM radius, the
greater is the probability of a stochastic pore. The model predicts accurately that
in bilayers that contain solvent, the probability of stable open pores increases. This
aspect of the simulations might explain the behavior of painted bilayers (that con-
tain solvent) as somewhat “leakier” membranes (Hanke and Schlue, 1993).

Undoubtedly, the presence of metastable hydrophilic pores in equilibrium mem-
branes has fundamental importance for both fundamental science and medical
biotechnology. Such transbilayer metastable pores can become stable under dif-
ferent environment conditions. The stochastic pores in membranes may represent
intermediate states in phase transitions, membrane fusion and budding. The elec-
troporation of cells and lipid vesicles may be used in several biotechnological appli-
cations, such as cell transfection, drug delivery and gene therapy. Finally, the for-
mation and stability of the stochastic pores are very complex, because they depend
on many intrinsic properties of the lipid bilayers as well as several environmental
parameters, including temperature, electric potential, mechanical stress, pH, ionic
strength.

Appendix A

Taking into account the following trigonometry relations:

sin2(kr) = 1 − cos(2kr)
2

and cos2(kr) = 1 + cos(2kr)
2

. (A.1)

the terms given by the Eqs. (8)–(10) (see the main text) become

T0 = 4
R2

R∫
0

r
1 + cos(2kr)

2
dr − kBT

Ba0h
(3N − Nc) (A.2)

T1 = 4γ

hBR2

R∫
0

(kh)2r
1 − cos(2kr)

2
dr (A.3)
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T2 = 4K1

R2 B

R∫
0

[
k2h2

r
sin2(kr) + k3h2 sin(2kr) + k4h2r

1 + cos(2kr)
2

]
dr . (A.4)

Taking also into consideration the following integrals I1, I2, I3:

I1 =
R∫

0

r cos2(kr) dr = R sin(2kR)
2k

− 1 − cos(2kR)
4k2

(A.5)

I2 =
R∫

0

sin(2kr) dr = 1 − cos(2kR)
2k

(A.6)

I3 =
R∫

0

sin2(kr)
r

dr =
1∫

0

sin2(kRs)
s

ds (A.7)

entering into the calculation of T0, T1, and T2, one obtains the final expressions of
the T0, T1, and T3, as they appear in the Eqs. (11)–(13) (with the notations α = kR
and β = kh).

Appendix B

Let us consider that in the initial state, in a coordinate system with its origin in
the middle of the bilayer and the Oz axis oriented perpendicularly on the bilayer
surface (Fig. B1), a pore is characterized by

1. its radius as a function of ordinate, z: rp(z);
2. r0 = r(0) its neck radius;
3. the line tension, σ , defined as the free energy change due to the modification of

the pore neck contour by an unity of length;
4. the surface tension, γ p, defined as the free energy change due to the modifica-

tion of the pore by an unity of surface.

This initial state is marked as state “1” and all the parameters referred to it are
marked with index “1.” Similarly, we mark the state “2” and its parameters.

Now, one increases the pore radius, r0, from the initial value, r1(0), to final state,
r2(0). We have noted S1, S2 and L1, L2 the pore internal surface area, and the pore
neck contour, respectively:

S1 = 2π

+h∫
−h

r1(z)

√
1 +

(
dr1

dz

)2

dz; S2 = 2π

+h∫
−h

r2(z)

√
1 +

(
dr2

dz

)2

dz (B.1)
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Fig. B1 Two parallel positions of the pore surfaces separated by a distance equal to �r. r1(0) and
r2(0) are the neck radii (i.e., z = 0) of S1 and S2 respectively. The figure is used to demonstrate
the relation between the line tension, σ , and the surface tension, γ , that characterize the state of
a pore, according to Litster’s model (see also the text).

L1 = 2πr1; L2 = 2πr2. (B.2)

Let us assume that the two surfaces are “parallel” one to another (Fig. B1), and
r2(z) − r1(z) = �r . We also assume that L2 − L1 = 2π�r = 1 (for a unity length
variation).

Therefore, dr1
dz = dr2

dz .
The energy change, �EL, due to the increase of linear contour of pore by one

length unity is

�EL = σ (L2 − L1) = σ. (B.3)

The corresponding energy change, �ES, due to surface change is

�ES = γp(S2 − S1) = 2π �r lγp = lγp (B.4)

where, γ p is surface tension of the pore interface, which is nearly equal with surface
tension, γ , of a monolayer (i.e., half-bilayer surface tension), and l is the length of
the arc whose rotation around Oz axis generate the pore.

Equating �EL, from (B.3) with �ES from (B.4), one obtains that σ = lγp. Mea-
suring electrical tension for lipid bilayer breakdown, the data have been fitted
using σ = hγp, in order to find the coefficient, γ . In this formula, h is the entire
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hydrophobic thickness of planar lipid bilayer (h is two times h used in this work,
Pastushenco et al., 1979).

In these conditions, the critical radius, rc, from the formula of Litster, is equal to
rc = l

2 . In this work, we approximated l ≈ 2h and rc = h. The equality is available
for cylindrical pores.
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