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ABSTRACT: A lipid vesicle, or simply called a liposome, represents a synthetic compartment for
the examination of transmembrane transport and signaling phenomena. Yet, a liposome is always
subjected to size and shape fluctuations due to local and global imbalance of internal and external
osmotic pressures. Here, we show that an osmotically stressed liposome placed within a hypotonic
spherical bath undergoes cyclic dynamics described by a periodic sequence of swelling and
relaxation phases. These two phases are interfaced by the appearance of a transient transmembrane
pore through which chemical delivery occurs. An analytical model was formulated for the recurrent
differential equations that convey the time-dependent swelling phase of a pulsatory liposome
during individual cycles. We demonstrate that the time-dependent swelling phases of the last several cycles of a pulsatory liposome
are strongly dependent on the size of the external bath. Furthermore, decreasing the size of the hypotonic medium reduces the
number of cycles of a pulsatory liposome. Comparisons and contrasts of an infinite hypotonic bath with finite external baths of
varying radii are discussed.

■ INTRODUCTION
Cellular response to local and global fluctuations in the
osmotic pressure of the external environment is a fundamental
property of living systems. There are numerous mechanisms by
which cells operate for regulating the strain of the cellular
membrane, including mechanosensitive and water channels. In
a much more simplified context, a unilamellar liposome
undergoes shape and size fluctuations upon rapid changes in
the environmental osmotic pressure. It has already been
documented that a liposome undergoes a cyclic activity when it
is filled with an aqueous solution of an increased osmotic
pressure and it is placed within a finite hypotonic environ-
ment.1−3 In each cycle, the osmotic influx of water swells the
liposome up to a critical point at which the membrane attains
the maximum strain that is characterized by a critical (or lytic)
tension, σc (Figure 1A). In this way, the radius of a spherical
liposome expands from an initial value, R0, to a critical value,
Rc. At this point, the nucleation of a transient transmembrane
pore occurs,4−8 sometimes leading to an irreversible rupture of
the liposomal membrane.9−12 This phase, also called the
swelling phase,13 is followed by solute extrusion through the
transient pore and a fast relaxation (or compression) phase
until the liposome reaches its initial size. Then, a new cycle
begins and the liposome activity becomes cyclic. This is the
reason why we call this liposome a pulsatory liposome.
Therefore, a pulsatory liposome operates like a two-stroke
engine. The transmembrane gradient of osmotic solute assures
the potential energy that generates the functional force of the
engine.
The succession of swelling and relaxation phases is mediated

by the appearance of a transmembrane pore formed in a
stretched liposomal membrane (Figure 1B). A significant

number of theoretical,4,7,10,11,14−24 computational,25−27 and
experimental5,11,28−32 studies have reported the presence of
transient pores in liposomes and planar lipid membranes.
Moreover, there is an increasing interest in the exploration of
these metastable transmembrane pores because of their pivotal
role in the cyclic activity of an osmotically stressed
liposome.1−3,7,33−37

In this paper, we put an emphasis on the swelling phase of
the cyclic activity of a liposome when it is inserted into a finite
hypotonic environment. If the external bath is filled with water,
then the external concentration of the solute increases in a
cyclic fashion.1,2,37−39 The cyclic activity of the liposome
depends on the transmembrane gradient of the solute. The
relaxation phase is short-lived, and it does not affect the
swelling phase.2 Our expectation is that the size of the
hypotonic environment has a significant impact on the number
of cycles, the swelling time of a pulsatory liposome, as well as
the total amount of solute released into the external
environment. On the other hand, we expect that other
biophysical parameters of a pulsatory liposome, such as the
relaxation time, are not significantly affected. Therefore, we
wanted to explore the swelling phase of a pulsatory liposome of
varying cycle order.
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Here, we report that the size of the finite hypotonic bath has
a substantial impact on the total number of cycles and the
amount of solute released during the active life of the
liposome. A pulsatory liposome becomes inactive at a point in
which the internal osmotic pressure is equal to the Laplace
pressure (Figure 1C). The outcomes of this study represent a
theoretical platform for further developments with a practical
impact. Specifically, the solute might be substituted by a
chemical agent of pharmacological significance for a health-
care application. In this case, a pulsatory liposome can release

drugs in a programmable fashion at a strategic location of a
targeted tissue.40,41

■ METHODS
Background. Let us consider a large liposome filled with a solute-

containing aqueous solution and assume that it is located within a
sufficiently large, water-filled spherical bath. In the first phase, the
liposome expands from the initial state up to a critical state when a
single transient transmembrane pore appears. Let us set the initial
liposomal radius equal to R0. In this case, the liposomal membrane is
unstretched so that the mechanical surface tension, σ, is zero. In the
critical state, the liposomal radius and surface tension are Rc and σc,
respectively. In the second phase, the cycle is determined by the
appearance of the transmembrane pore. The time trajectory of the
transient pore has two phases: in the first part, the pore radius
increases up to a maximum value, rm, and in the second part, the pore
radius declines up to the pore closure, leading to the recovery of the
liposomal membrane (Figure 1A,B). During this process, some solute
amount is extruded through the transient pore.

As soon as the membrane is recovered, the liposome returns to its
initial state and a new cycle begins. In our model, we assumed that the
critical membrane tension, σc, at which the relaxation phase starts
depends on the intrinsic properties of the liposomal membrane so that
this is assumed unaltered by increasing the cycle order.1,10,11 Because
of the solute release through the transient transmembrane pore, the
internal solute concentration is changed at the end of each cycle. The
liposomal expansion is mediated by the balance between the osmotic
and Laplace pressures. This is the conceptual mechanism by which an
osmotically stressed liposome placed within a finite, hypotonic
environment can undergo a cyclic activity as a result of the balance
between the osmotic and Laplace pressures (Figure 1C). Overall, each
cycle of a pulsatory liposome is characterized by a differential
equation for the liposomal radius during the swelling (expansion)
phase and a system of three differential equations for the liposomal
radius, transient pore radius, and solute internal concentration during
the relaxation (compression) phase.

Analytical Model for the Swelling Phase. Let us consider that
the initial state of the liposome is defined by the surface area, A0, and
the volume, V0. At the same time, the initial state of the liposome is
characterized by the initial internal concentration of the solute, C01. In
a hypotonic environment, the liposomal volume increases because of
the osmotic pressure difference between the interior and exterior of
the lipid vesicle. The direct outcome of the volume growth is the
stretching of the bilayer membrane and the appearance of the Laplace
pressure. During liposomal swelling, two pressures occur in directions
against each other: osmotic pressure, ΔPosm, and Laplace pressure,
ΔPL, corresponding to the transmembrane gradient of the solute
concentration and surface tension, respectively (Figure 1B).

The rate of change in the liposomal volume, V, is described by the
following equation

V
t

P V A P P
d
d

( )w w osm Lβ= Δ − Δμ (1)

Here, Pw and Vμw denote the water permeability across the liposomal
membrane and the water molar volume, respectively. A is the total
area of the liposome.

Here,

N k T
1

A B
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(2)

where NA, kB, and T are the Avogadro number, the Boltzmann
constant, and the absolute temperature, respectively. The osmotic
pressure, ΔPosm,

42,43 and Laplace pressure, ΔPL,
29,30 are given by the

following equations
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Figure 1. Diagrams that show details of the dynamics of a pulsatory
liposome during a single cycle. (A) Each cycle encompasses two
phases: swelling phase (top) and relaxation phase (bottom). The
initial radius of the liposome, R0, is reached when the surface tension
is zero. In contrast, the critical radius of the liposome, Rc, is attained at
a critical surface tension, σc. At this point, the liposomal membrane
undergoes a lytic tension, leading to a transient transmembrane pore.
The maximum radius of the transient pore is rm. (B) This model
assumes the osmotic stress-induced formation of a single transient
pore across the liposomal membrane. The dynamics of the transient
pore is affected by the balance between the driving force for the pore
opening, Fσ, which corresponds to the mechanical surface tension of
the membrane, σ, and the driving force for pore closure, Fγ, which
corresponds to edge tension (or line tension), γ. The former force is
created by the Laplace pressure, whereas the latter force is created by
the strong hydrophobic interactions among the alkyl tails of the
liposomal phospholipids. r is the pore radius. h is the thickness of a
monolayer of the liposomal bilayer membrane. (C) Schematic that
shows the balance of the osmotic and Laplace pressures during the
succession of various cycles. ΔPosm and ΔPL are the osmotic and
Laplace pressures, respectively. n is the cycle order. A pulsatory
liposome becomes active when ΔPL < ΔPosm. The tilted line in black
corresponds to a pulsatory liposome located within an infinite
hypotonic bath (e.g., a larger number of cycles). The tilted line in
orange corresponds to a pulsatory liposome located within a finite
hypotonic bath (e.g., a smaller number of cycles).
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where

C C Cm in outΔ = − (5)

is the transmembrane gradient of the solute concentration. R denotes
the liposomal radius. Cin and Cout are the solute concentrations inside
and outside the liposome, respectively. According to Hooke’s law of
elasticity in a two-dimensional formulation, if a closed spherical
membrane is stretched by surface tension, σ, the radius of the swelled
state, R(σ), is

R R
E

( ) 10σ σ= +
(6)

where R0 and R are the liposomal radii in the initial (untensed) state
and expanded (tensed) state, respectively. In eq 6, E is the elastic
modulus for the stretching and compression of the liposomal
membrane in two dimensions. Therefore, if a liposome is stretched,
then the mechanical tension is given by the following formula

E
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R

2
0
2

0
2σ =

−
(7)

Let us assume a spherical geometry of the liposome. Using eqs 2−7,
we rewrite eq 1 in the following form
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Let us consider two cases. In the first case, the liposome is placed
within an infinite water bath with a time-independent solute
concentration (Cout = 0). In the second case, the liposome is placed
within a finite (closed) hypotonic environment with a time-dependent
solute concentration. In the latter case, Cout increases during the
pulsatory solute exchange with the hypotonic environment, whereas
Cin decreases. Using the law of mass conservation during the swelling
process of the first cycle (Supporting Information, eqs S1−S7), eq 8
can be analytically solved for the first cycle, as follows
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Here, C01 is the initial internal solute concentration.
Differential eq 9 has a solution that is a bijective function
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where Rc is the critical radius of the liposome. Here, we define the
critical swelling ratio, xc, by the following formula

x
R
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c

0
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(13)

One might calculate the inverse function R = R(t). Yet, the differential
equation of the swelling process of a pulsatory liposome in the n-th
cycle is given by the following expression (Supporting Information,
eqs S8−S16)
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where
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The differential equations that describe the swelling phases of a
pulsatory liposome, except the equation for the first cycle, can be
solved using numerical methods.

Comparisons between the First Cycle and Subsequent
Cycles. The major question in this study is how the “finite” nature of
the spherical environment with a radius, Rb, impacts the parameters of
the liposome. Specifically, we solve the differential equation for the
swelling phase of each cycle. For the first cycle, Cout = 0, and the
differential equation is provided by eq 9. The final form of eq 8 for the
expansion phase of a pulsatory liposome during the n-th cycle (n ≥ 2,
Cout > 0) is eq 14. The functional operation of a pulsatory liposome is
contingent upon a specific imbalance between competing pressures:
the osmotic pressure is greater than the Laplace pressure

RT C
R

2σΔ >
(16)

This is the running condition of a pulsatory liposome. During the
cyclic activity of the liposome, its osmotic pressure declines
continuously until this becomes equal to the Laplace pressure. At
this point, the cyclic activity of a pulsatory liposome stops. The
number of cycles achieved by a pulsatory liposome is calculated by the
following formula
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■ RESULTS
Our analytical model can be used to acquire quantitative
information regarding the cyclic activity of an osmotically
stressed liposome. Let us consider that such a giant unilamellar
vesicle (GUV) has the radius in the initial state, R0 = 19.7 μm,
and the radius of the critical state, Rc = 20.6 μm.5 In addition,
we consider a liposome that contains a solution of a
nonpermeant solute. Let us consider that the initial internal
solute concentration is C01= 0.5 M. Using experimentally
determined parameters,44 the membrane permeability coef-
ficient for water, Pw, is equal to 3 × 10−5 m/s and the
molecular volume of a water molecule is Vμw = 18.04 × 10−6

m3/mol. A representative value of the two-dimensional stretch
modulus of the lipid bilayer is E = 0.2 N/m.29,30 Typical values
for the surface tension, σ, of a phospholipid membrane in a
stretched state are in the range of 0.1−1 mN/m.28,33 Yet,
GUVs undergo much greater values of their surface tension
due to their large spherical surfaces. To examine the effect of a
finite water bath on a pulsatory liposome, we considered three
closed spherical boxes with a radius, Rb, where Rb values are
4R0, 8R0, and 12R0. We formulate the following parameters
that characterize the cyclic activity of a liposome: the number
of cycles, the amount of solute released at the end of the cyclic
liposomal activity, the duration of each cycle, and the total
lifetime of the cyclic activity.
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Using eq 17, we found that the total numbers of cycles for
finite hypotonic environments with radii 4R0, 8R0, and 12R0
are 30, 42, and 46, respectively. If a liposome is placed into an
infinite hypotonic environment, namely, for Cout = 0 and an
indefinite duration, then the cyclic activity has 47 cycles. This
is a value closely similar to the maximum cycle order of a
spherical hypotonic bath of radius, Rb = 12R0. This outcome
was obtained using eq 17 and employing the condition Rb →
∞. Theoretical predictions of this analytical model are in
accord with prior experimental observations acquired by
Karatekin and colleagues.29,30 They have experimentally
detected a succession of 30−40 pores in a giant liposome
tensed by intense optical illumination, each of them
corresponding to a certain cycle order.
Figure 2 shows the time dependence of the swelling ratio of

a pulsatory liposome, R/R0, for the first part of the cyclic

activity of the liposome, which includes 15 cycles. These
calculations were performed for finite hypotonic spherical
baths with radii Rb = 4R0 (Figure 2A), Rb = 8R0 (Figure 2B),
and Rb = 12R0 (Figure 2C), as well as for an infinite hypotonic
environment (Rb → ∞; Figure 2D). The swelling phase
occurred at a swelling ratio, Rc/R0, in the range of 1−1.045.
These panels show that the time dependences of the swelling
phases for cycles from the beginning of the cyclic activity are
fairly linear and slightly dependent on the size of the external
hypotonic environment. For example, for n = 3, the swelling
times of a pulsatory liposome were 4.90, 5.07, and 5.09 s, for
the radii of the external bath 4R0, 8R0, and 12R0, respectively. If
the liposome was inserted into an infinite hypotonic environ-
ment, then the swelling time was 5.10 s, a closely similar value
to those acquired for finite hypotonic water baths. On the
other hand, for n = 15, the swelling times were 22.46, 25.17,
and 25.47 s, for the radii of the external bath of 4R0, 8R0, and
12R0, respectively. Yet, the swelling time was 25.60 s when the

liposome was inserted within an infinite hypotonic environ-
ment.
Figure 3 illustrates the time dependence of the swelling ratio

of a pulsatory liposome for the last part of the cyclic activity,

which encompasses 12−14 cycles. This data was acquired for
the cases presented in Figure 2, either for a finite spherical bath
or for an infinite environment under hypotonic conditions (Rb
= 4R0, Figure 3A; Rb = 8R0, Figure 3B; Rb = 12R0, Figure 3C;
Rb → ∞; Figure 3D). In both cases, the finite hypotonic
medium and opened water bath, the expanded liposomal
radius is a linear function on the swelling time, except for the
last cycles. This observation is highlighted for the case of
hypotonic environments of larger sizes, e.g., for n = 46 when Rb
= 12R0 as well as for n = 46 and 47 when Rb → ∞. Moreover,
in contrast to the findings pertaining to Figure 2, the swelling
phases of the last cycles were drastically slower in large external
baths (e.g., for Rb = 12R0 and Rb → ∞) with respect to smaller
finite environments (e.g., for Rb = 4R0 and 8R0). This
phenomenon was amplified at the highest cycle orders. For
instance, the durations of the swelling phases were 16.95 and
31.42 min for n = 42 and 46, respectively, when Rb was 12R0
(Figure 3C). The slowest swelling phase, in the duration of
69.97 min, was obtained for n = 47 when a pulsatory liposome
was placed within an infinite water bath (Figure 3D).
Figure 4A presents the durations of the swelling phase of the

30th cycle of pulsatory liposomes located in hypotonic water
baths of varying radii. One can note a significant distinction
between the swelling rate acquired for the external bath with
the smallest radius and the others. If we define the swelling rate
as the critical swelling ratio divided by the total swelling time,
meaning (Rc/R0)/tswell, where tswell is the duration of the
swelling phase for a certain cycle order, then its value was 4.52
× 10−4 s−1 for the 30th cycle of a finite bath with Rb = 4R0. In
contrast, slower swelling rates of 2.56 × 10−4, 2.37 × 10−4, and

Figure 2. Time dependence of the liposomal radius during the
swelling phase for cycles of varying cycle order, n, at the beginning of
the cyclic activity. Different panels indicate cases when the liposome
was placed within a finite water bath of radii, Rb = 4R0 (A), Rb = 8R0
(B), and Rb = 12R0 (C), as well as when the liposome was placed
within an infinite water bath, Rb → ∞ (D). In (A)−(D), the cycle
orders of the liposomal activity are 3, 6, 9, 12, and 15.

Figure 3. Time dependence of the liposomal radius during the
swelling phases that correspond to the last cycles of the pulsatory
activity. This time dependence is illustrated for three distinct cases of
a finite hypotonic environment and an infinite hypotonic water bath,
as follows: (A) Rb = 4R0, cycles 18, 21, 24, 27, and 30; (B) Rb = 8R0,
cycles 30, 33, 36, 39, and 42; (C) Rb = 12R0, cycles 33, 36, 39, 42, and
46; and (D) infinite hypotonic medium, cycles 36, 39, 42, 46, and 47.
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2.29 × 10−4 s−1 were determined for external baths with the
radii equal to 8R0, 12R0, and infinity, respectively.
Figure 4B illustrates the time dependence of the swelling

ratio, R/R0, of a pulsatory liposome during the last cycle. The
durations of the swelling phase of the last cycles were equal to
1.68, 11.84, and 31.42 min when a pulsatory liposome was
inserted into finite hypotonic media with radii 4R0, 8R0, and
12R0, respectively. Yet, the duration of the swelling phase of
the last cycle was equal to 69.97 min when the liposome was
placed within an infinite hypotonic environment. These are the
durations required for a pulsatory liposome to attain the
critical swelling ratio, Rc/R0, of 1.045 during the last cycle. This
observation reveals that an increase in the size of the external
hypotonic bath drastically declines the swelling rate of a
pulsatory liposome in the terminal cycle.
We found that the durations of the first half of the swelling

phase of the last cycles (e.g., those corresponding to R/R0 =
0.5 × (Rc/R0 + 1) = 1.0228) were equal to 0.90, 5.88, and
13.42 min when a pulsatory liposome was inserted within finite
hypotonic media of radii 4R0, 8R0, and 12R0, respectively.
However, the duration of the first half of the swelling phase of
the last cycle was equal to 21.77 min when the liposome was
placed within an infinite hypotonic bath. Notably, in this case,
the duration of the second half of the swelling phase of the last
cycle was equal to 48.19 min, a significantly longer value than
that of the first half of the swelling phase. This outcome results
from a strong nonlinear time dependence of the liposomal
swelling ratio in the last cycle of an infinite external bath
(Figure 4B, F → ∞, n = 47).
Figure 5 shows the duration of the swelling phase as a

function of the cycle order for hypotonic baths of smaller sizes
(Figure 5A) and for larger environments (Figure 5B). It is clear
that cycles of low-order numbers (n < 15) are significantly
shorter than those of high-order numbers (n > 30). The
duration of the swelling phase drastically increased to tens of

minutes for cycles with an order number greater than 40. On
the contrary, the total swelling time for the maximum cycle
order was only 100.95 s in the case of the smallest hypotonic
bath.
If the pulsating liposome functions as a device for the

controlled release of a chemical agent, then the most important
parameter is the amount of solute released into the external
environment during its functional operation. Let us assume
that the initial internal concentration of the solute is equal to
0.5 M, so the liposome contains Q01 = C01V0 = 9.643 × 1012

molecules. At the end of the cyclic activity, a pulsatory
liposome releases the amounts of solute equal to Q30 = 9.4997
× 1012 molecules, Q42 = 9.6083 × 1012 molecules, and Q46 =
9.6227 × 1012 molecules, if this liposome is placed within
closed hypotonic environments with radii Rb = 4R0, 8R0, and
12R0, respectively. For the case of an infinite hypotonic bath,
the amount of delivered solute is equal to Q47 = 9.625 × 1012

molecules, which is ∼99.81% of the initial solute amount. We
highlight that the amount of solute released during a single
cycle of the same order is unchanged regardless of whether a
pulsatory liposome is placed into a finite or an infinite
hypotonic environment.

■ DISCUSSION
In the Results section, we provided a detailed quantitative
description of the swelling phase of a pulsatory liposome when
this is placed within a hypotonic bath of varying size. The
energy required for the liposomal swelling is provided by the
osmotic transmembrane gradient. The swelling phase is an
active process of each cycle and is described by a differential
equation for the radius of the liposome (eq 8). In contrast, the
liposomal relaxation is a passive and fast process,38,39 resulting
from the appearance of a transient pore of a pulsatory liposome
at a point that reaches a critical radius, Rc, and a critical surface
tension, σc. The appearance of the transient pore is a critical
event for the cyclic activity of the liposome because at this
point the swelling phase stops and the relaxation phase starts.

Figure 4. Comparisons of the durations of the swelling phase of the
30th cycle and final cycle for distinct sizes of the hypotonic water
bath. (A) Duration of the swelling phase of the 30th cycle for the
three sizes of finite hypotonic water baths (Rb/R0 = 4, 8, and 12) and
for an infinite hypotonic environment. (B) Duration of the swelling
phase of the last cycle for the three sizes of finite hypotonic water
baths (Rb/R0 = 4, 8, and 12) and for an infinite hypotonic
environment.

Figure 5. Duration of the swelling phase as a function of the cycle
order for a pulsatory liposome. (A) Comparison of hypotonic water
baths with Rb = 4R0 and 8R0. (B) Comparison of hypotonic water
baths with Rb = 12R0 and Rb → ∞.
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After this event, some internal solute is released into the
external hypotonic bath.
The lifetime of the transient pore is ∼1.725 s.45 This value

was previously inferred using similar conditions to those
employed in this study. The transient pore undergoes two
phases, the expansion and shrinkage phases. The durations of
these phases are 225 and 1500 ms, respectively. The lifetime of
the pore is independent of the cycle order of the pulsatile
liposome. Kinetics of the two phases of the transient pore
depends on the properties of the liposomal membranes.
Because of the very short duration of the transient pore, we
expect that this parameter does not significantly affect the
overall dynamics of the liposomal cyclic activity.
The pore energy, Ep, is given by the following formula46

E r r2p
2π γ σπ= − (20)

This shows the balance between the line tension and surface
tension. Here, r denotes the pore radius. γ and σ are the line
tension and surface tension coefficients, respectively. The only
stable energetic minimum of Ep is reached at a radius r = 0.
The transient pore undergoes membrane rupture at a pore
radius greater than a critical radius, rc = γ/σ. However, this
phenomenon is rare because the activation free energy for this
process is high (ΔE = πγ2/σ).47 For smaller tensions, a
transient pore can rapidly shrink, evolving toward a closed pore
state. On the contrary, for tensions greater than a critical value,
a transient pore can rapidly expand until it reaches membrane
rupture, leading to liposomal lysis. Therefore, it is not possible
to detect stable transmembrane pores with long lifetimes. Yet,
Zhelev and Needham have demonstrated for the very first time
the appearance of long-lived quasi-stable transmembrane pores
with a radius of 1 μm in GUVs.48 A giant liposome was
aspirated into a micropipette and short-lived electrical stimuli
were applied across the vesicle. In this way, the lifetime of
relatively stable pores spanned a duration range from tenths of
a second to several seconds. These studies enabled the
determination of the pore size and pore line tension. In parallel
with these studies, Wilhelm and co-workers have studied the
kinetics of pore appearance followed by mechanical rupture
using high-voltage, charge-pulse technique.49 A large number
of theoretical ,4 ,5 ,7 ,10 ,11 ,14−24 ,28−30 ,46 computation-
al,7,16,21,23,25−27,50 and experimental5,11,28−32 studies have
documented the existence of these transient pores across
bilayer membranes.
Our analytical model involves a spherical symmetry. Yet, in a

given experimental context, ample alterations in external
mechanical stress can lead to membrane deformations51−53

and thickness fluctuations.7 We considered the case of a
spherical liposome because this geometry represents the
equilibrium conformation with enhanced shape stability of
the membrane. This also means that the membrane tension, σ,
has a uniform value across the entire liposomal surface. If
transient undulations occur,50,54 then the amplitude of these
membrane motions would normally decrease during the
liposomal swelling phase. Quantitative assessment of local
and global membrane undulations, some of which might be
thermally activated, is experimentally challenging. The
spherical geometry represents the average experimental
substate of the undulatory dynamics of the liposomal
membrane.2,36,37 It is also a reason for which the outcomes
of our analytical model quantitatively recapitulate experimental
results (see below). However, if an amplified out-of-membrane

pressure occurs, this would lead to stable membrane
deformations. In this case, the membrane tension, σ, has no
longer a uniform value across the entire liposomal membrane.
In addition, the swelling phase of the liposome is no longer
described by a single differential equation. The transient
transmembrane pore appears on the liposomal membrane,
where the critical surface tension, σc, is reached. Moreover, the
liposome may feature a cyclic activity when stable membrane
deformations take place.
Here, we highlighted the quantitative aspects of the swelling

phases of the cycles of a pulsatory liposome under finite
hypotonic conditions for one major reason. Because the
duration of the relaxation phase is very short, the alteration in
the internal concentration of the solute is negligible during this
process. Indeed, recent experimental studies of the cyclic
activity of GUVs provided evidence for very short-lived
relaxation phase38,39 and unchanged initial radius of the
vesicle, R0, of a pulsatory liposome for successive cycles.2,33

Yet, there is experimental evidence that indicates fluctuations
in the critical radius, Rc, of a pulsatory liposome for successive
cycles.2,33 This finding suggests a more complex dependence of
the lytic tension on the cycle order, which was not included in
our analytical model (see Methods). Indeed, Evans and co-
workers,55 as well as Chabanon and co-workers,2 have shown
that the lytic tension for the pore formation is a function that
depends on the load rate. Therefore, we expect that the
amplitude of Rc and the time of pore appearance are affected
by the cycle order. If the lytic tension depends on the cycle
order, then the corresponding critical value of liposome radius,
Rc, is introduced in eqs 14 and 15. Dependence of the lytic
tension on the load rate will certainly affect the swelling phase
of the liposome. Therefore, this will affect the overall duration
of large-order cycles. If the liposomes are exposed to a
surfactant-containing environment, then the partitioning of
surfactant molecules into the membrane likely changes the lytic
tension at which short-lived pores occur.36

The periodic behavior of osmotically stressed liposomes has
been first predicted by Koslov and Markin.9 Later, other
groups have developed theoretical approaches for acquiring
quantitative information on this fundamental process.1,38 Our
theoretical formulation includes low-amplitude size fluctua-
tions of the swelling and relaxation phases between R0 and Rc,
which are characterized by a critical liposomal radius of ∼4.5%
out of that value of an unstretched lipid vesicle. This
assumption is in good accord with the cyclic size fluctuations
of GUVs, as previously reported.3,5,39 Our model quantitatively
recapitulates the number of the swelling−relaxation cycles
observed experimentally. For example, we acquired a total
number of cycles, nmax, of 47 for our infinite hypotonic bath.
This value is close to the numbers of swell/burst cycles noted
with GUVs in hypotonic media.38 Furthermore, our model
calculations predict long-lived swelling phases of larger-order
number cycles, which is in quantitative agreement with
recently reported experimental determinations of osmotically
stressed lipid vesicles.2,37

In summary, we formulated an analytical model that
provides quantitative information on the cyclic activity of a
lamellar liposome in a finite hypotonic environment. The
swelling phase of the last several cycles of a pulsatory liposome
is strongly dependent on the size of the external bath. A
reduced number of cycles of a pulsatory liposome, as well as a
lower amount of chemical agent released into the external
environment, were found by decreasing the size of the external
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hypotonic medium. Furthermore, the duration of the swelling
phase is strongly dependent on the cycle order, which is in
good accord with recent experimental explorations of the
pulsatory GUVs.2,33 For example, the swelling phases of the
last few cycles last several hundreds of seconds, contrasting the
cycles of low-order numbers, which are in the second range.
From a practical point of view, the consumed fuel of this two-
stroke liposomal engine might be substituted by an active
biotherapeutic agent. Finally, there is great potential for the use
of lipid vesicles in clinical applications, specifically for
controlled drug release of targeted chemicals at precise
locations of diseased tissues. In this case, the osmotically
stressed liposomes would be located within a finite hypotonic
environment.
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