BIOGRAPHICAL SKETCH

Provide the following information for the Senior/key personnel and other significant contributors. Follow this format for each person. **DO NOT EXCEED FIVE PAGES.**

NAME: MOVILEANU, LIVIU

eRA COMMONS USER NAME (credential, e.g., agency login): LMOVILEA

POSITION TITLE: PROFESSOR

EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.)

INSTITUTION AND LOCATION	DEGREE (if applicable)	Completion Date MM/YYYY	FIELD OF STUDY
University of Bucharest	B.S.	06/89	Physics
University of Bucharest	M.S.	06/90	Polymer Physics
University of Bucharest	Ph.D.	04/97	Biophysics
University of Missouri-Kansas City	Postdoc	10/98	Biochemistry & Biophysics
Texas A&M University Health Science Center	Postdoc	08/04	Biochemistry & Biophysics

B. Positions and Honors

B1. Positions and Employment

1991-1995 Teaching Assistant and Graduate Student, University of Bucharest, Bucharest, Romania

1996-1997 Assistant Professor of Biological Physics, University of Bucharest, Bucharest, Romania

1997-1998 Visiting Research Associate, University of Missouri-Kansas City, Kansas City, Missouri

1999-2004 *Postdoctoral Research Associate,* Texas A&M University, College Station, Texas

2004-2010 Assistant Professor of Physics, Syracuse University, Syracuse, New York

2010-2016 Associate Professor of Physics, Syracuse University, Syracuse, New York

2016- Professor of Physics, Syracuse University, Syracuse, New York

2016- Adjunct Professor of Biomedical and Chemical Engineering, Syracuse University, Syracuse

B2. Other Experience and Professional Memberships

1993-1994	Graduate Research Fellowship, University of Amsterdam, Amsterdam, The Netherlands
1997	Research Fellow, Tempus Program, CEN Saclay, Paris, France
1998-	Member, American Biophysical Society
1998-2003	Associate Member, Abdus Salam ICTP, Trieste, Italy
2002-2003	Visiting Assistant Professor, Delft University of Technology, Delft, The Netherlands
2004-	Member, Structural Biology, Biochemistry, and Biophysics Graduate Program (SB3) at
	Syracuse University
2004	Panel member, Designing Nanostructures Pre-Conference, National Academies Keck Futures Initiative, Washington, D.C., USA
2004	Panel adviser, The National Academies/Keck Future Initiatives: "Designing Nanostructures at the Interface between Biomedical and Physical Systems," Irvine, California, USA
2005	Member, American Physical Society, International Association of Nanotechnology
2007-	Member, Syracuse Biomaterials Institute (SBI), Syracuse, New York
2007	Panel member and adviser, The NSF Workshop on Biosensing and Bioactuation, "The NSF Initiative in Biosensing and Bioactuation," College Park, Maryland, USA

2008-	Associate Fellow, Institute for Complex Adaptive Matter (ICAM)
2008-	Regular Panel Reviewer, NSF, Arlington, Virginia, USA
2010-2014	Member, SUNY Upstate Cancer Research Institute (CRI), Syracuse, New York
2011-2016	<i>Member</i> , The IGERT Graduate Program, "Soft Interfaces - Bridging the Divide in Graduate Education (iBriD), Syracuse, New York, USA
2011	<i>Reviewer</i> , the Netherlands Organization for Scientific Research (NWO), Amsterdam, The Netherlands
2011	Panel member, The NSF Workshop at the University of Wisconsin: "Open Forum for Innovation in Two-Photon Microspectroscopy," Milwaukee, Wisconsin, USA
2012-2014	Reviewer, the Belgian Research Council, Brussels, Belgium
2012-	Panel member & adviser, The NSF Biomaterials Workshop – Important Areas for Future Investment, The NSF Initiative in Biomaterials, Arlington, Virginia, USA
2012-2019	<i>Director</i> , Structural Biology, Biochemistry, and Biophysics Graduate Program (SB3), Syracuse University
2015-2016	Panel Reviewer, Biomaterials and Biointerfaces (BMBI) Study Section, NIH
2015-2016	Reviewer, NIH Transformative Research Program, NIH
2016	Panel Reviewer, Enabling Bioanalytical and Imaging Technologies (EBIT) Study Section, NIH
2016	Panel member and adviser, The NSF Supported Workshop on "Biomaterials: Tools and Foundry" by the NSF-DMR-MIP Program, Arlington, Virginia, USA
2017-	Member, Center for Soft and Living Matter, Syracuse University, Syracuse, New York, USA.
2017-	Member, Editorial Board, Applied Sciences, Section, Applied Chemistry
2018	Panel Reviewer, Enabling Bioanalytical and Imaging Technologies (EBIT) Study Section, NIH
2019	Reviewer, NIH Transformative Research Program, NIH
2019	Panel Reviewer, Nanotechnology (NANO) Study Section, NIH
2019	Panel Reviewer, Biomaterials and Biointerfaces (BMBI) Study Section, NIH

B3. Honors and Awards

- 1997 2002 Associate Research Fellowship, Abdus Salam ICTP, Trieste, Italy
- 1997 *Research Fellowship*, TEMPUS Program of the European Community, Higher Education Commission, CEA Paris, France
- 1998 *Fellowship*, Welcome Trust Award for International Postdoctoral Fellows, United Kingdom
- 2012 *Faculty Mentor*, Beckman Scholars Program, Syracuse University

C. Contribution to Science

C1. Design, development, and optimization of single-molecule biosensors

The central goal of my research program is the redesign and adaptation of β -barrel transmembrane protein pores for single-molecule studies. We have successfully redesigned transmembrane protein pores for the development of biomolecular sensors, which were utilized at high temporal and spatial resolution and under harsh conditions of experimentation (e.g., very acidic pH). We have persistently used the α -hemolysin (α HL) protein, a heptameric β -barrel pore-forming complex of *Staphylococcus aureus*. The primary driving force of these studies represented its unusual mechanical and thermodynamic stability, enabling both chemical and genetic engineering of affinity groups at strategic locations within the pore lumen and without impairing its functional features. Thus, extensive membrane protein design studies using α HL transformed the area of single-molecule biophysics by revealing opportunities for discovering protein-based sensing elements for a variety of small-molecule chemicals and biopolymers. These included polysaccharides, polypeptides, folded proteins, and nucleic acids. Moreover, we were able to convert ferric hydroxamate ferric uptake component A (FhuA) of *Escherichia coli* from a non-conductive outer membrane protein to a large-conductance transmembrane protein pore, which can be readily used in a broad range of analytical applications.

- M.M. Mohammad, R. Iyer, K.R. Howard, M.P. McPike, P.N. Borer and L. Movileanu, 2012, Engineering a Rigid Protein Tunnel for Biomolecular Detection, <u>J. Am. Chem. Soc.</u> 134(22), 9521-9531. PMCID: PMC3415594
- 2. L. Movileanu, 2009, Interrogating single proteins through nanopores: challenges and opportunities, <u>*Trends Biotechnol.*</u> 27(6), 333-341.
- M.M. Mohammad, S. Prakash, A. Matouschek and L. Movileanu, 2008, Controlling a single protein in a nanopore through electrostatic traps, <u>J. Am. Chem. Soc.</u> 130(12), 4081-4088.
- 4. A.K. Thakur and **L. Movileanu**, 2019, Real-time measurement of protein-protein interactions at singlemolecule resolution using a biological nanopore, *Nature Biotechnol.* **37(1)**, 96-101.

C2. Molecular biomedical diagnostics using protein pores and solid-state nanopores

We have expanded our knowledge in the area of molecular biomedical diagnostics by designing and developing sensing elements with solid-state nanopores. We were able to fabricate such sensors using siliconnitride membranes and focused electron beams of a high-accelerating voltage transmission electron microscope (TEM). Our primary contribution to this area of research is the first single-molecule determination of spontaneous protein adsorption on an inorganic surface. Moreover, we were able to extend these explorations in the area of biomarker discovery and analysis. Thus, this methodology shows promise for molecular biomedical diagnostics of various diseases at stages much earlier than currently possible and without use of highly qualified personnel, expensive reagents, as well as sophisticated equipment.

- D.J. Niedzwiecki, R. Iyer, P.N. Borer and L. Movileanu, 2013, Sampling a Biomarker of the Human Immunodeficiency Virus across a Synthetic Nanopore, <u>ACS Nano</u> 7(4), 3341-3350. PMCID: PMC3634884
- 2. M.G. Larimi, L.A. Mayse, and **L. Movileanu**, 2019, Interactions of a Polypeptide with a Protein Nanopore Under Crowding Conditions, <u>ACS Nano</u>, **13(4)**, 4469-4477. PMCID: PMC6482057
- D.J. Niedzwiecki, J. Grazul and L. Movileanu, 2010, Single-molecule observation of protein adsorption onto an inorganic surface, <u>J. Am. Chem. Soc.</u> 132(31), 10816-10822. PMCID: PMC2917251

C3. Structural and functional studies of the outer membrane carboxylate channels in *Pseudomonas* aeruginosa

In collaboration with Dr. Bert van den Berg (The University of Newcastle upon Tyne, UK), we have devoted extensive biochemical, biophysical, and functional studies on the outer membrane carboxylate proteins (Occ) in *P. aeruginosa*. The primary function of the Occ proteins is to mediate the uptake of small nutrients, in the form of polar and nonpolar substrates, for the growth and vitality of the cell. This collaboration, through an R01 grant, generated ~9 joint publications between both research teams. In brief, we employed high-resolution, single-channel electrical recordings to obtain a comprehensive biophysical analysis of thirteen members of the Occ family in *P. aeruginosa*. This work was instrumental for the elucidation of specificity and selectivity of substrate uptake through individual Occ proteins.

- E. Eren, J. Parkin, A. Adelanwa, B.R. Cheneke, L. Movileanu, S. Khalid and B. van den Berg, 2013, Towards understanding the outer membrane uptake of small molecules by *Pseudomonas aeruginosa*, <u>J.</u> <u>Biol. Chem.</u> 288(17), 12042-12053. PMCID: PMC3636890
- 2. B.R. Cheneke, M. Indic, B. van den Berg and L. Movileanu, 2012, An Outer Membrane Protein undergoes Enthalpy- and Entropy-driven Transitions, *Biochemistry* **51(26)**, 5348-5358. PMCID: PMC3448022
- J. Liu, E. Eren, J. Vijayaraghavan, B.R. Cheneke, M. Indic, B. van den Berg and L. Movileanu, 2012, OccK Channels from *Pseudomonas aeruginosa* Exhibit Diverse Single-channel Electrical Signatures, but Conserved Anion Selectivity, *Biochemistry* 51(11), 2319-2330. PMCID: PMC3311111
- 4. S. Biswas, M.M. Mohammad, L. Movileanu and B. van den Berg, 2008, Crystal structure of outer membrane protein OpdK from *Pseudomonas aeruginosa*, <u>Structure</u> **16(7)**, 1027-1035.

C4. Membrane protein design, folding and stability

Extensive biochemical and biophysical studies in my laboratory involved ample genetic engineering of a diverse range of α -helical and β -barrel protein pores, resulting in new nanostructures with novel functional and electrophysiological features. For example, we were able to produce a dramatic modification of the lumen of a β -barrel protein pore by implementing 25 neutralizations of acidic residues. Such a drastic change of the inner surface of a transmembrane protein pore without altering its open-state conductance demonstrates the robustness, versatility and tractability of β -barrel structures. These unique opportunities helped us to obtain informative data on spontaneous current gating in β -barrel pores when large deletions of the extracellular loops were conducted in a methodical manner using precise molecular engineering.

- A.J. Wolfe, J.F. Gugel, M. Chen, and L. Movileanu, 2018, Kinetics of Membrane Protein-Detergent Interactions Depend on Protein Electrostatics, <u>J. Phys. Chem. B</u>, 122(41), 9471-9481. PMCID: PMC6193827
- A.J. Wolfe, Y.C. Hsueh, A.R. Blanden, M.M. Mohammad, B. Pham, A.K. Thakur, S.N. Loh, M. Chen, and L. Movileanu, 2017, Interrogating Detergent Desolvation of Nanopore-forming Proteins by Fluorescence Polarization Spectroscopy, <u>Anal. Chem.</u> 89(15), 8013-8020. PMCID: PMC5558884
- 3. S. Couoh-Cardel, Y.C. Hsueh, S. Wilkens, and **L. Movileanu**, 2016, Yeast V-ATPase Proteolipid Ring Acts as a Large-conductance Transmembrane Protein Pore, <u>Sci. Rep.</u> 6, 24774. PMCID: PMC4838861
- 4. A.J. J. Wolfe, J.F. Gugel, M. Chen, and **L. Movileanu**, 2018, Detergent Desorption of Membrane Proteins Exhibits Two Kinetic Phases, *J. Phys. Chem. Lett.* **9**, 1913-1919. PMCID: PMC5908730

C5. Voltage gating of protein channels

My other long-standing research interest is to obtain a better quantitative understanding of the voltage gating process in β -barrel membrane proteins. This is because the molecular basis by which β -barrel proteins switch among various well-defined and functionally distinct sub-states remains elusive. We extensively examined voltage gating in a number of outer membrane proteins and pore-forming toxins. Our contributions in this area included a semi-quantitative analysis of the kinetics and thermodynamics of these ubiquitous processes at single-molecule resolution.

- M.M. Mohammad, N. Tomita, M. Ohta, and L. Movileanu, 2016, The Transmembrane Domain of a Bicomponent ABC Transporter Exhibits Channel-forming Activity, <u>ACS Chem. Biol.</u> 11(9), 2506-2518. PMCID: PMC5026576
- 2. B.R. Cheneke, B. van den Berg, and **L. Movileanu**, 2015, Quasithermodynamic Contributions to the Fluctuations of a Protein Nanopore, <u>ACS Chem. Biol.</u> **10(3)**, 784-794. PMCID: PMC4372101
- M.M. Mohammad, K.R. Howard and L. Movileanu, 2011, Redesign of a plugged beta-barrel membrane protein, <u>J. Biol. Chem.</u> 286(10), 8000-8013. PMCID: PMC3048687
- S. Biswas, M.M. Mohammad, D.R. Patel, L. Movileanu and B. van den Berg, 2007, Structural insight into OprD substrate specificity, <u>Nature Struct. Mol. Biol.</u> 14(11), 1108-1109.

A complete List of Published Work can be found in NCBI MyBibliography:

http://www.ncbi.nlm.nih.gov/sites/myncbi/1TmmV3o4fyQO/bibliography/40279609/public/?sort=date&direction=descending