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Recent advances in quantitative proteomics show that WD40 proteins play a pivotal role
in numerous cellular networks. Yet, they have been fairly unexplored and their physical
associations with other proteins are ambiguous. A quantitative understanding of these
interactions has wide-ranging significance. WD40 repeat protein 5 (WDR5) interacts with
all members of human SET1/MLL methyltransferases, which regulate methylation of the
histone 3 lysine 4 (H3K4). Here, using real-time binding measurements in a high-through-
put setting, we identified the kinetic fingerprint of transient associations between WDR5
and 14-residue WDR5 interaction (Win) motif peptides of each SET1 protein (SET1Win).
Our results reveal that the high-affinity WDR5-SET1Win interactions feature slow associ-
ation kinetics. This finding is likely due to the requirement of SET1Win to insert into the
narrow WDR5 cavity, also named the Win binding site. Furthermore, our explorations indi-
cate fairly slow dissociation kinetics. This conclusion is in accordance with the primary
role of WDR5 in maintaining the functional integrity of a large multisubunit complex,
which regulates the histone methylation. Because the Win binding site is considered a
key therapeutic target, the immediate outcomes of this study could form the basis for
accelerated developments in medical biotechnology.

Introduction
WD40 repeat protein 5 (WDR5) is a conserved chromatin-associated protein that is involved in a
number of transient protein–protein interactions [1]. However, WDR5 is notoriously known for its
regulatory role in multisubunit epigenetic complexes, such as Suppressor of Variegation, Enhancer of
Zeste, and Trithorax 1 (SET1) lysine methyltransferases (KMT) of histones [2–8]. There are six SET1
family members in humans: MLL1, MLL2, MLL3, MLL4, SETd1A, and SETd1B. Each member forms
a large multisubunit complex with functions that appear to have diverged in target gene localization
and product specificity. However, features common among the complexes are a C-terminal catalytic
SET domain that is regulated by interaction with a conserved subcomplex consisting of WDR5, retino-
blastoma binding protein-5 (RbBP5), absent-small-homeotic-2-like protein (Ash2L), and dumpy-30
(DPY-30) (WRAD2) [7,9–20]. WDR5 functions to bridge the interaction between the SET domain
and other WRAD2 subunits by the recognition of an evolutionarily conserved WDR5-interaction
(Win) motif found in all SET1 family members [21–25]. Formation of this core complex is required
for optimal methyltransferase activity [9,11,26]. Therefore, small molecules targeting the Win
motif-WDR5 protein–protein interaction show promise as anticancer therapeutic candidates.
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Interestingly, recent studies have revealed that WDR5 is involved in numerous interactions with other pro-
teins [27–29], including the transcription factor MYC oncoprotein [30–35], 3-phosphoinositide-dependent
protein kinase 1 (PDPK1) [36], and interacting partners involved in phosphatidylinositol 3-kinase (PI3K) sig-
naling [36]. Moreover, WDR5 is implicated in nongenomic activities, such as regulatory mechanisms of cellular
shape, polarity, and migration [37,38]. Therefore, WDR5 is a multitasking protein with diverse roles in cellular
processes [36,39,40]. Its highly conserved sequence across multiple organisms suggests the fundamental signifi-
cance of its multiple roles [40].
An essential structural archetype of WDR5 is its internal cavity that hosts a high-affinity binding pocket for

an evolutionarily conserved Arg-containing peptide segment of the six SET1 proteins [21–23]. Interestingly,
this binding cavity of WDR5, here named the Win binding site, is the same [21,23] as that previously suggested
to bind histone H3 [41–46]. Yet, the WDR5-SET1 interaction is required for the stability and functional oper-
ation of the C-terminal catalytic SET domain [11,21,22]. Moreover, it has only recently been identified that the
Win binding site is implicated in transient protein–protein interactions with dozens of proteins, including
those involved in PI3K signaling [36]. Given that WDR5 is overexpressed under various oncogenic conditions
[47–49], the Win binding site has become a key therapeutic target for different cancers [24,25,50–59].
Therefore, a better mechanistic and quantitative understanding of the interactions of the Win binding site with
other Win motif partners has fundamental and clinical significance [60–64].
Several research groups have previously examined interactions of WDR5 protein with Win-motif SET1

(SET1Win) peptides using a variety of approaches, such as analytical ultracentrifugation (AUC) [22], isothermal
titration calorimetry (ITC) [21,24,65], surface plasmon resonance (SPR) [23], and X-ray crystallography
[21,23,24,65]. These explorations have confirmed the high affinity of the Win binding site for different Win
motif interaction partners [24,65]. In this study, we determined the kinetic fingerprint and affinities of these
interactions using high-throughput optical and fluorescence approaches, which included biolayer interferometry
(BLI), SPR, and steady-state fluorescence polarization (state-state FP).
WDR5 is a 334-residue protein that has a seven-bladed, WD-40 repeat-based β propeller structure surround-

ing a central cavity (Figure 1A) [29,66–68]. Each blade contains four anti-parallel β strands. A segment of the
central cavity serves as the high-affinity Win binding site for the SET1Win peptides (Figure 1B; Supplementary
Figures S1, S2) [21,23,24,65]. Here, we performed a systematic kinetic analysis of the interactions of WDR5
with six 14-residue SET1Win peptides, which include an evolutionarily conserved Arg residue at P0 (Table 1).
Moreover, this Arg residue has been shown to be critical to WDR5-SET1Win interactions (Supplementary
Table S1; Supplementary Figure S3) [22,26,69,70]. In addition, SET1Win sequences contain a highly conserved
six-residue Win motif peptide, at positions P−3 through P2, along with eight residues on their flanking sides, at
positions P−7 through P−4 and P3 through P6. These flanking residues diverge among SET1 family members,
accounting for differences in the binding affinity of WDR5-SET1Win interactions [24,65]. The highly conserved
six-residue Win motif peptide has to insert into the WDR5 binding cavity to facilitate these highly specific
WDR5-SET1Win interactions [24,65]. Therefore, the choice of a 14-residue length of SET1Win was based on the
requirement of the minimal six-residue Win motif sequence, along with four residues on each flanking side.
This also facilitated the interpretation of our results in light of a prior crystallographic study [24], which was
conducted with an identical SET1Win length.
Here, we employed multiple techniques to probe the effect of the surface immobilization on the kinetic fin-

gerprint of WDR5-SET1Win interactions as well as to establish the efficacy of each technique for the measure-
ment of the kinetic rate constants and binding affinities. We provide a critical analysis of each approach with
respect to the kinetics of the Win binding site. BLI and SPR require surface immobilization, while steady-state
FP does not. On the other hand, steady-state FP is free from this limitation, but is unable to provide real-time
kinetic measurements. Furthermore, the use of multiple approaches allowed us to provide quantitative and
qualitative validations of our conclusions and to obtain more generalizable outcomes that were not restrained
by any one approach. Finally, we also show that distinctions in the kinetic rate constants of these interactions
are correlated with unique sequences on the SET1Win peptides’ flanking sides.

Materials and methods
Protein expression and purification
Human WDR5 (UniProtKB — P61964; WDR5_HUMAN) was expressed and purified, as follows. pET3aTr
vectors containing the 6×His-TEV-WDR5 sequence were transformed into Rosetta™ 2 BL21(DE3)pLysS
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(Novagen, Cat #71403) competent E. coli cells. Rosetta™ 2 BL21(DE3)pLysS (Novagen, Cat #71403) competent
E. coli cells were grown overnight on Luria-Bertani (LB) agar carbenecillin/chloramphenicol selection plates at
37°C. An amount of 50 ml LB broth starter cultures (one per 10 L bioreactor growth) containing 50 mg/ml
each of carbenecillin and chloramphenicol were inoculated with 5 colonies and grown for 3–5 h until turbid at
37°C. An amount of 10 L Luria broth bioreactors (Eppendorf BioFlo, Enfield, CT) containing 50 mg/ml each of
carbenecillin and chloramphenicol, in addition to Antifoam 204 (Sigma–Aldrich, St. Louis, MO), were then
inoculated at 37°C and 800 rpm with the entire turbid starter culture. When the culture attained OD600 = 0.8,
agitation was decreased to 600 rpm and the temperature was rapidly dropped to 18°C. Induction of target pro-
teins was initiated with 100 mM Isopropyl-β-D-1-thiogalactopyranoside (IPTG; Goldbio, St. Louis, MO) at 18°
C. After 12–24 h post-induction at 18°C, cells were pelleted by centrifugation at 4465×g using a J6-MI centri-
fuge (Beckman Coulter, Brea, CA) for 30 min at 4°C. The pellet was resuspended in 50 mM Tris–HCl (pH

A

B

Figure 1. Structure of the binary WDR5-MLL1Win complex.

(A) The insertion of MLL1Win into the WDR5 cavity is shown from the top. (B) The same interaction is shown from the side.

These graphic representations were made using the pdb code 4ESG [63].

Table 1 Alignment of the amino acid sequence of SET1Win motifs

Peptide P−7 P−6 P−5 P−4 P−3 P−2 P−1 P0 P1 P2 P3 P4 P5 P6 Charge

MLL1Win: MLL13758–3771 L N P H G S A R A E V H L S1 0

MLL2Win: MLL25333–5346 I N P T G C A R S E P K I L +1

MLL3Win: MLL34703–4716 V N P T G C A R S E P K M S +1

MLL4Win: MLL42504–2517 L N P H G A A R A E V Y L S2 0

SETd1AWin: SETd1A
1488–1501 E H Q T G S A R S E G Y Y P −1

SETd1BWin: SETd1B
1698–1711 E H V T G C A R S E G F Y T −1

1This is a R3771S substituted MLL1Win peptide;
2This is a R2517S substituted MLL4Win peptide.
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7.4), 300 mM NaCl, 10 mM βME, and 20 mM imidazole. The resuspended cells were frozen on dry ice and
stored at −80°C until purification.
Cell pellets were lysed with a Qsonica Sonicator Q700 (FisherBrand, Pittsburg, PA) on ice. An amount of

5 L of thawed, resuspended pellets were resuspended in 160 ml of 50 mM Tris–HCl (pH 7.4), 300 mM NaCl,
3 mM DTT, and 30 mM imidazole (lysis/Ni-NTA Buffer A/dialysis buffer) containing an additional 200 ml of
phenylmethylsulfonyl fluoride (PMSF; Sigma–Aldrich) and two Pierce™ Protease Inhibitor Mini Tablets
(EDTA-free; Thermo Fisher Scientific, Waltham, MA). The cell suspensions were stirred at 4°C for 15 min
until homogeneous and then sonicated for 10 min at 90% power (2 s on, 4 s off ). Lysate was then centrifuged
for 1 h at 4465×g and 4°C, and the supernatant was stored at 2–8°C for purification. A Ni-NTA purification
process was followed. A Kontes 25 × 200 mm column with 30–40 ml Ni-NTA resin (Qiagen, Hilden, Germany)
was equilibrated with at least 10 resin-bed volumes (RBVs) of 0.22 mm filtered de-ionized (DI) H2O to remove
ethanol, and then at least 5 RBVs of Ni-NTA Buffer A (above). After equilibration, lysate was added to the
column and washed with 5–10 RBVs of Ni-NTA Buffer A. Sample was eluted using at least 5 RBVs of Ni-NTA
Buffer B (50 mM Tris–HCl (pH 7.4), 300 mM NaCl, 3 mM DTT, and 500 mM imidazole). An amount of 5 ml
fractions were collected, analyzed via SDS–PAGE, and pooled. Then, sample was dialyzed, as follows.
WDR5-containing fractions were pooled into 12–14 kDa MWCO dialysis tubing (Repligen, Waltham, MA),
then 2.5 mg of GST-6H-TEV protease (per 5 L of culture; expressed and purified in-house) was added to
cleave the His-tag, and the solution was dialyzed against 4 L of dialysis buffer (above) overnight for 12–18 h at
2–8°C. Dialyzed protein was analyzed via SDS–PAGE to ensure complete cleavage. A negative Ni-NTA was
then conducted. The resulting cleaved WDR5 solution was passed through a Bio-Rad Ni-NTA IMAC cartridge
(Bio-Rad, Hercules, CA) using a Bio-Rad NGC chromatography system (Bio-Rad) to remove the cleaved
His-tag and GST-6H-TEV protease. The flowthrough was collected, analyzed via SDS–PAGE and UV-Vis, and
concentrated for size-exclusion chromatography (SEC) purification. As a final polish, the WDR5 proteins were
purified via SEC using a HiLoad® 26/600 Superdex® 200 pg column (GE Healthcare, Chicago, IL) into 20 mM
Tris–HCl (pH 7.5), 300 mM NaCl, 1 mM ZnCl2, 1 mM TCEP. Fractions of interest were analyzed via SDS–
PAGE and UV-Vis, pooled, concentrated where necessary, aliquoted to 1 ml, flash-frozen in liquid nitrogen,
and stored at −80°C.

Peptide synthesis, labeling, purification, and analysis for BLI measurements
All peptides for biolayer interferometry measurements were synthesized by GenScript (Piscataway, NJ). The
peptides were purified to ≥95% purity. Amino acid analysis, purity confirmation, and solubility testing were
provided by GenScript. All peptides were biotinylated at the N terminus. Their C terminus was amidated.

Peptide synthesis, labeling, purification, and analysis for SPR and FP
measurements
For Fmoc-SPPS, peptides were synthesized at theoretical 100 mmol scale using the standard double coupling
workflow pre-programmed on the Biotage Syro I peptide synthesizer (Biotage, Charlotte, NC). An amount of
278 mg of Rink Amide AM Resin LL (100–200 mesh, 0.36 mmol/g functionalization; Novabiochem (EMD
Millipore)) was loaded into each 10 ml reactor vial, corresponding to the 100 mmol synthesis scale. Each resin
aliquot was swelled with DMF for 30 min, followed by an initial resin deprotection step using 40% piperidine
in DMF. Each double coupling cycle was comprised of two independent, 45 min coupling sub-steps that dif-
fered in the choice of activation reagents: (1) DIC/Oxyma (1 : 2 ratio with respect to Fmoc-[AA]), followed by
(2) HBTU/DIPEA (0.95 : 2 ratio with respect to Fmoc-[AA]). For each coupling sub-step, four molar equiva-
lents of each respective 0.5 M Fmoc-[AA] stock was added to each vial. Each coupling cycle terminated with a
double Fmoc deprotection step using 40% piperidine in DMF. Coupling reactions proceeded with interspersed
vortexing of the vials and under an air atmosphere at ambient temperature. Following the conclusion of
peptide synthesis, resins were washed with three successive aliquots of DCM, followed by 3 min under vacuum
to dry.
Each peptidyl-resin aliquot was swelled with DMF for 30 min and drained. DMF (1200 ml) was added to

each aliquot, followed by 300 ml of DIPEA in NMP (six molar equivalents, 600 mmol), then followed by 600 ml
of Lissamine Rhodamine B sulfonyl chloride in DMF (three molar equivalents, 300 mmol). The mixture was
shielded from light and allowed to react with intermittent vortexing overnight at ambient temperature.
Following conjugation, the resin bed was drained, washed successively with DMF until no further change in the
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color of the flowthrough was observed (faint pink), washed successively with DCM, and then held under
vacuum for 3 min to dry.
Cleavage cocktail containing 90% TFA, 5% TIS, 2.5% DODT, and 2.5% H2O was freshly prepared. An

amount of 4 ml of cleavage cocktail was added to each peptidyl-resin aliquot, sealed, and placed on a rocking
platform to react for 4 h at ambient temperature. After incubation, the contents of each reactor vial were
plunged into separate 50 ml conical tubes. The resin was then treated with an additional 2 ml of cleavage cock-
tail and allowed to react on the rocking platform for 30 min at ambient temperature. Following the second
incubation, the contents of each reactor vial were pooled into their respective 50 ml conical tubes and the resin
containing reactor vials were discarded. Cleavage aliquots were triturated by the fast addition of ∼45 ml cold
(−80°C) diethyl ether. Precipitate was compacted by centrifugation at 1000×g for 10 minutes at 0°C using an
Allegra X-22R centrifuge (Beckman Coulter, Brea, CA). The supernatant was discarded, and the peptide pellets
were washed with a second ∼30 ml aliquot of cold diethyl ether, centrifuged, and decanted as before. The
resulting peptide pellets were flash frozen in liquid nitrogen and lyophilized using a FreeZone 2.5L lyophilizer
(Labcono, Kansas City, MO) overnight to remove residual solvents. The crude lyophilized peptide was stored at
−80°C until purification.
Crude peptide aliquots were purified using reversed-phase chromatography through two stages: (1) Flash

chromatography using a Biotage Isolera One (Biotage AB, Uppsala, Sweden), (2) Semi-preparative HPLC using
a Waters 2695 separations module equipped with a Waters 2996 photodiode array detector (PDA). (1) Biotage
Isolera One purifications: Each crude peptide aliquot was solubilized in 2.5 ml total of either DMSO or DMF
(DMF only if the peptide contained oxidizable Cys or Met residues) and loaded onto a Biotage Sfär C18

Samplet for 25 g Column (Biotage, Uppsala, Sweden) with the aid of a vacuum. Each samplet was placed in a
Biotage Sfär Bio C18 D Duo (300 Å, 20 mm) 25 g column (Biotage). Peptides were eluted using a 15-column
volume (CV) gradient of 9–90% MeCN in H2O containing 0.1% TFA at a flowrate of 30 ml/min. The collection
threshold was 75 mAU for λ = 200–400 nm, with monitoring at λ = 215 nm and 355 nm (rhodamine).
Rhodamine labeled fractions were pooled and MeCN was removed using a rotary evaporator for 30 min at 25°
C. Samples were flash-frozen in liquid nitrogen and lyophilized using a FreeZone 2.5L lyophilizer (Labcono)
for 3 days. The semi-pure lyophilized peptide was stored at −80°C until further purification. (2)
Semi-preparative HPLC: Peptide samples were resuspended in 50–80 ml aliquots of DMSO or 1 : 2 DMSO/
H2O. Aliquots were injected onto a Waters XBridge Peptide BEH C18 OBD Prep Column (5 mm, 300 Å,
10 mm × 150 mm). A gradient of 10–50% MeCN containing 0.1% (v/v) TFA in H2O containing 0.1% (v/v)
TFA was applied over 40 min (Δ1%/min.) at a flow rate of 4.73 ml/min. at ambient temperature using a Waters
2695 separations module. Sample detection occurred at 215 nm, 280 nm, 355 nm (rhodamine), and 560 nm
(rhodamine) using a Waters 2996 photodiode array detector (PDA). Sample purity was determined by baseline
integration using Waters Empower 3 software (>90% purity in all cases). Rhodamine containing fractions were
analyzed by MALDI-TOF mass spectroscopy for the identity and purity confirmatory tests. Target fractions
were flash-frozen in liquid nitrogen and lyophilized using a FreeZone 2.5L lyophilizer (Labcono) for three days.
The resulting purified, lyophilized peptides were reconstituted as concentrated stocks in ultrapure water, ali-
quoted, flash-frozen in liquid nitrogen, and stored at −80°C until use.
For MALDI-TOF mass spectroscopy of the purified peptides, 1 ml of peptide stock in H2O (1–100 mM) was

mixed with 9 ml spotting matrix (10 mg/ml α-cyano-4-hydroxycinnamic acid (CHCA) in 50 : 50 MeCN/0.1%
(v/v) TFA in H2O). An amount of 2 ml of each peptide spotting solution was spotted onto a Bruker MTP 384
Target Plate, which was calibrated using Anaspec Peptide Mass Standard Kit, and allowed to dry at room tem-
perature for at least 30 min prior to analysis. Samples were analyzed on a Bruker Autoflex iii Mass
Spectrometer as an average of 1200 shots using 35% laser power, an m/z range from 840–6000 Da with sup-
pression <400 Da in linear mode, 3.6× detector gain, 2.00 sample rate, and medium gating strength.

Biolayer interferometry (BLI)
Octet RED384 (FortéBio, Fremont, CA) was used for the BLI studies [71–73]. Streptavidin (SA) sensors were
presoaked in buffer for ∼30 min. The buffer solution contained 150 mM NaCl, 20 mM Tris–HCl, 1 mM TCEP,
1 mg/ml bovine serum albumin (BSA), pH 7.5. An amount of 5 nM tagged peptide was then loaded onto
sensors for 15 min. Sensors were then dipped in buffer again for 5 min to wash off unbound peptides from the
surface. A 3-fold serial dilution of WDR5 was conducted ranging from 0.1 mM to 9 mM for the association
process and then placed into the buffer solution for the dissociation process. The association and dissociation
processes were ∼200 and ∼600 s long, respectively. For all WDR5 concentrations, unloaded sensors were run
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concurrently as controls and were used to subtract the baseline and the drift in the sensorgrams to extract the
binding curves. The BLI experiments were performed at 24°C. All reagents were prepared in the above- men-
tioned buffer and were loaded into 96-well flat bottom black plates for the sensorgram recordings. The binding
curves were fitted using the Octet Data Analysis software (FortéBio). The curves of the association process,
which were recorded for various analyte concentrations, [C], were fitted using the following equation [74]:

Y ¼ Y1 � (Y1 � Y0)e
�kobst (1)

Here, Y0 and Y∞ are the BLI response signals at time zero and infinity, respectively, of the association process.
t denotes the cumulative time of the association reaction. kobs is the apparent first-order reaction rate constant
of the association process. The curves of the dissociation process were fitted using the following equation:

Y ¼ Y1 þ (Y0 � Y )e�koff t (2)

Here, Y0 and Y∞ are the BLI response signals at time zero and infinity, respectively, of the dissociation process.
koff indicates the dissociation rate constant. Finally, the association rate constant, kon, was determined using the
slope of the linear curve [75,76]:

kobs ¼ kon[C]þ koff (3)

Global fitting, which was conducted using several analyte concentrations, provided the corresponding kon and
koff values. The dissociation constant, KD, were indirectly determined using the kon and koff values. Three dis-
tinct BLI measurements were conducted for all inspected interactions.

Surface plasmon resonance (SPR)
All SPR experiments [77–79] were conducted on a Cytiva Biacore 8K (Cytiva Life Sciences, Marlborough, MA).
All buffers and dilutions were freshly made in-house using ultrapure water obtained from an IQ 7000 Milli-Q
system (Millipore-Sigma, Burlington, MA). WDR5 protein was immobilized onto the active flow cell of each
channel of a Cytiva Series S Sensor Chip CM5 (Cytiva Life Sciences) according to the following parameters
and protocol. A CM5 chip was inserted into the instrument and equilibrated for 1 h at 25°C in PBS-P+
running buffer (PBS-P+ Buffer 10×, Cytiva Life Sciences). The chip surface was activated using an injection of
1 : 1 N- hydroxysuccinimide (NHS)/1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (Cytiva Amine
Coupling Kit, Cytiva Life Sciences) for 420 s at 10 ml/min across both active and reference flow cells. This acti-
vation process was followed by a wash of the microfluidics with 1 M ethanolamine-HCl (pH 8). Following acti-
vation, wild-type WDR5 (1.75–2.50 mg/ml; analyte dependent) in 50 mM sodium phosphate (pH 6.5), 50 mM
NaCl was then injected across the active flow cell for 150 s at 10 ml/min. Following ligand immobilization, both
active and passive flow cells were chemically deactivated with an injection of 1 M ethanolamine-HCl (pH 8)
for 420 s at 10 ml/min. SET1Win peptide dilutions were freshly prepared from HPLC- purified peptide stocks in
ultrapure water; the peptides were identical with those used in the steady-state FP experiments and contained
an N-terminal sulforhodamine B and a C-terminal amide. Titrations of each labeled SET1Win peptide analyte
were conducted to span an approximate range of 0.1–10 × KD (∼1 nM to 7 mM; 40 mM for MLL1). Each
SET1Win peptide was analyzed in a separate channel. Multicycle kinetic analyses were conducted at a flow cell
temperature of 25°C and a sample compartment temperature of 20°C in a running buffer composed of 20 mM
Tris- HCl (pH 7.5), 150 mM NaCl, 1 mM TCEP, 0.05% Tween 20. Each analysis cycle consisted of the follow-
ing steps: (1) SET1Win peptide analyte injection: 120 s association, 360 s dissociation, 30 ml/min.; (2) regener-
ation injection with 100% ethylene glycol for 15 s at 10 ml/min. (high viscosity setting); (3) wash of the
microfluidics system with running buffer; (4) regeneration injection with 1 mM ZnCl2 for 30 s at 10 ml/min.
Prior to curve fitting, all data generated from the active flow cell of each channel are double referenced to both
the appropriate buffer blanks (first/last) and the reference flow cell. For MLL2Win, MLL3Win, MLL4Win,
SETd1AWin, and SETd1BWin, the affinity constants, KD, were calculated indirectly using KD = koff/kon. For
MLL1Win, a plot of relative response versus the MLL1Win analyte concentration was constructed and data were
fitted using a four-parameter logistic regression to obtain the KD. Therefore, an affinity analysis (relative
response vs. concentration dose- response curve) was used to calculate the KD, in this instance due to kinetic
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rate constants falling outside of the instrument detection range. All interactions were independently determined
in triplicate (e.g. separate ligand immobilizations). Experimental data and fits were plotted using GraphPad
Prism 8 (GraphPad Software).

Steady-state fluorescence polarization (steady-state FP) measurements
All steady-state fluorescence polarization (FP) measurements were recorded using a SpectraMax i3x plate
reader (Molecular Devices, San Jose, CA).[80,81] HPLC-purified peptides, which contained an N-terminal sul-
forhodamine B and a C-terminal amide, were reconstituted as concentrated stocks in ultrapure water and used
in all subsequent experiments. All steady-state FP assays were conducted in a buffer containing 20 mM Tris–
HCl (pH 7.5), 150 mM NaCl, 1 mM TCEP, 0.005% Tween 20 and plated in black untreated 96-well polystyrene
microplates (Corning Inc., Corning, NY). Steady-state FP assays were conducted in triplicate, 24-point serial
dilution for each of the six SET1Win peptides against WDR5. An amount of 200 ml of WDR5 stock solutions,
ranged from 21.6 to 131 mM, were added to each well on the first column of one of two adjacent black 96-well
dilution plates, and 100 ml of the assay buffer was added to wells A2-H24 over the two plates. WDR5 variants
were then diluted down the two plates by transferring 100 ml from each well to the next, for a total of 24,
2-fold dilutions which range from low mM to low pM (variant specific). Following dilutions, 100 ml of the
appropriate 20 nM labeled SET1Win peptide, which was dissolved in the assay buffer, was added to each well on
each set of plates at a final concentration of 10 nM. The steady-state FP anisotropy was measured on the plates
after a 1 h incubation at room temperature in the dark. The resulting dose-response data were averaged and
fitted using a four-parameter logistic regression to obtain the binding affinity (KD) for each interaction. Data
were plotted and analyzed using GraphPad Prism 8 (GraphPad Software, San Diego, CA).

Molecular graphics
All cartoons showing molecular graphics were prepared using the PyMOL Molecular Graphics System (Version
2.4.0 Schrödinger, LLC).

Results and discussion
The kinetic fingerprint of WDR5 — SET1Win interactions
We first explored the association (kon) and dissociation (koff ) rate constants of WDR5-SET1Win interactions
using BLI measurements [71,72]. This technology probes ligand-receptor interactions that lead to accumula-
tions of bimolecular complexes at the surface of the BLI sensor. This process is facilitated by immobilizing one
interacting partner (ligand) onto the surface of the BLI sensor and supplying the analyte partner (receptor)
from solution. In this way, the association and dissociation phases of the ligand-receptor complex are optically
measured in real time using alterations in the interference pattern between reflected light waves at the surface
of the BLI sensor. The N-terminus of each SET1Win was biotinylated and their C-terminus was amidated
(Table 1). A nine- residue Gly/Ser-rich peptide spacer was inserted between the biotinylated site and the
SET1Win sequence. This 3 nm-long spacer ensures that there is a satisfactory distance between the BLI sensor
and SET1Win for WDR5 to interact without steric hinderance from the sensor surface.
The association binding curves were acquired through a 3-fold serial dilution of WDR5 (Figure 2). After the

BLI response reached a saturation level, individual dissociation binding curves were recorded when sensors
were placed in a WDR5-free buffer. The association and dissociation BLI phases underwent a time-dependent
single-exponential increase and decrease, respectively. The binding curves were fitted using the Octet Data
Analysis software (Materials and Methods; eqns. (1)–(3)). The equilibrium dissociation constants using BLI,
KD-BLI, were indirectly determined using kon and koff.

Association rate constants
The BLI-determined kon values were in the order of 104 M−1 s−1, clearly indicating slow association kinetics for
a protein–peptide system (Table 2). It is likely that this outcome resulted from two distinct physical restrictions:
(i) tethering SET1Win onto the surface of the BLI sensor, thus reducing its local mobility, and (ii) partitioning
of SET1Win into the WDR5 cavity. The latter physical process was illustrated in early crystallographic studies
[21], which revealed that an MLL1Win peptide penetrates into the WDR5 cavity to undergo a bimolecular asso-
ciation process. Here, we were unable to acquire an accurate mean value of kon for the WDR5-MLL1Win inter-
action due to its relatively fast koff constant, whose binding time constant was shorter than the time-resolution
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limit of this approach (∼1 s). Furthermore, kon measured by BLI for various SET1Win peptides were within the
same order of magnitude, suggesting a similar insertion mechanism of the six-residue Win motif peptide into
the Win binding site (Table 1; Supplementary Figures S1, S2) [24,65].

Dissociation rate constants
In contrast, koff values spanned between two and three orders of magnitude (Table 2), highlighting significant
distinctions in the WDR5-SET1Win interactions. This assumes that the koff of the WDR5-MLL1 interactions is
faster than 1 s−1, showing that MLL1Win has the weakest interaction with WDR5 among all SET1Win peptides.
On the other hand, the strongest WDR5-SET1Win interactions were monitored with MLL2Win and MLL3Win,
which had average koff values of (7.7 ± 0.2) × 10−3 s−1 and (5.3 ± 0.1) × 10−3 s−1, respectively. This finding pro-
vides unusually long binding times of ∼130 s and ∼190 s, respectively.

Figure 2. Label-free optical BLI sensorgrams of WDR5-SET1Win interactions.

5 nM biotin-tagged SET1Win peptides were loaded onto streptavidin (SA) sensors for 15 min. Titration series of WDR5 were

injected as analytes and the corresponding association and dissociation curves are shown for the six SET1Win peptides.

© 2021 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society2152

Biochemical Journal (2021) 478 2145–2161
https://doi.org/10.1042/BCJ20210253



It was previously demonstrated that WDR5-SET1Win interactions have a common archetype: a highly con-
served Arg residue at P0 (Table 1) [22]. This Arg residue is the pivotal player of WDR5-SET1Win interactions,
contributing to most of the binding affinity through a complex network of contacts with neighboring residues
(Supplementary Table S1; Supplementary Figure S3) [22,24]. To test this hypothesis, we conducted BLI mea-
surements using a control MLL3Win peptide, whose native form exhibited the longest binding time with
WDR5. The key Arg residue at P0 was replaced by an Ala residue, resulting in the R4710A MLL3Win mutant.
No interaction was detected with this R4710A MLL3Win mutant (Supplementary Figure S4), confirming the
critical role of Arg at P0 for the strength of WDR5-SET1Win interactions. In addition, this finding validates the
efficacy of our BLI measurements for examining the kinetic landscape of the Win binding site of WDR5.

Does the tethering restriction of SET1Win onto the surface of the BLI sensor
impact the kinetic rate constants?
Association rate constants
We postulated above that the slow association kinetics of WDR5-SET1Win interactions were caused at least in
part by the immobilization of SET1Win onto the surface of the BLI sensor. To assess this hypothesis, we next
employed SPR [77–79] as an orthogonal, label-free approach for examining these interactions of SET1Win pep-
tides with WDR5. SPR is an optoelectronic technique that monitors accumulation of bimolecular ligand-receptor
complexes onto the surface of the SPR sensor by changes in the refractive index. In this case, SET1Win analyte is
supplied by using a flow-driven fluidic device. WDR5 was immobilized onto the surface of the SPR chips as the
‘receptor’ (Materials and Methods). In this way, we recorded the association and dissociation phases in real time
when SET1Win was not immobilized onto a surface (Figure 3). BiacoreTM Software was used to analyze and fit
the SPR sensorgrams using a 1 : 1 binding interaction model to provide the kon and koff rate constants
(Supplementary Figure S5). In accord with our expectation, kon values obtained by SPR were significantly
increased by almost an order of magnitude to quantities greater than 105 M−1 s−1 (Table 3; Supplementary
Figures S6, S7A). Again, kon measured by SPR for various SET1Win peptides were within the same order of mag-
nitude, potentially indicating an identical insertion mechanism of the six-residue Win motif peptide into the
Win binding site (Table 1; Supplementary Figures S1, S2) [24,65]. In addition, this insertion mechanism prevails
no matter whether SET1Win is in either physically restricted (e.g. BLI) or unrestricted (e.g. SPR) conditions.

Dissociation rate constants
Interestingly, with the exception of SETd1A, the koff values acquired by the SPR measurement of
WDR5-SET1Win interactions closely resembled those measured by BLI (Table 3; Supplementary Figure S7B).

Table 2 Kinetic rate constants of association, kon, and dissociation, koff, and equilibrium
dissociation constants, KD-BLI, of WDR5 with SET1Win peptides using BLI

Peptide sequence kon (M−1 s−1) × 10−4 koff (s
−1) × 103 KD-BLI (nM)

Biotinyl-(GGS)3MLL1Win-NH2 ND1 ND2 ND3

Biotinyl-(GGS)3MLL2Win-NH2 4.4 ± 0.4 7.7 ± 0.2 170 ± 20

Biotinyl-(GGS)3MLL3Win-NH2 5.4 ± 0.6 5.3 ± 0.1 100 ± 5

Biotinyl-(GGS)3MLL4Win-NH2 2.3 ± 0.2 39 ± 2 1700 ± 200

Biotinyl-(GGS)3SETd1AWin-NH2 8.2 ± 0.8 51 ± 6 620 ± 20

Biotinyl-(GGS)3SETd1BWin-NH2 7.1 ± 0.5 17 ± 1 250 ± 30

1kon was not quantitatively determined. Although WDR5-MLL1Win interactions were detectable using a BLI
measurement (Figure 2), no accurate quantitative determination was made due to the limited time resolution of
this approach. In this case, we assume that the kon was in the same order of magnitude with the kon of the other
SET1Win peptides (∼104 M−1 s−1);
2koff was not quantitatively determined due to a fast dissociation rate constant. The upper- limit value for the
detection of koff is 1 s−1 according to instrument specifications;
3KD-BLI was not quantitatively determined due to the limited time resolution of the approach. In this case, KD-BLI

determined by BLI for WDR5-MLL1Win interactions should be greater than ∼105 nM. This value results from
dividing the upper-limit value of detection of koff (ND**) by the value of the kon approximation (ND*);Numbers
represent mean ± s.d. determined from three independent experiments.
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Moreover, this finding provides indirect evidence that WDR5 did not undergo denaturation upon its immobil-
ization onto the surface of the SPR sensor. Tethering SET1Win onto the surface of the BLI sensor via its
C-terminus was considered inconvenient, because prior crystallographic information indicated the interaction
of the C-terminus residues (Table 1) with the WDR5 surface [24]. However, does the SET1Win tethering onto
the surface of the BLI sensor via its N-terminus impose an additional physical restriction on the binding mech-
anism? Since the koff measured by BLI and SPR are almost identical, we conclude that the SET1Win tethering
onto the surface of the BLI sensor via its N-terminus did not produce any additional restrain on the detach-
ment mechanism of SET1Win from the high-affinity Win binding site.

Figure 3. Label-free optoelectronic SPR sensorgrams of the WDR5-SET1Win interactions.

Titration series of the respective SET1Win peptides were injected as analytes and the corresponding association and

dissociation curves are shown for the six SET1Win peptides.
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Comparisons of binding affinities of WDR5-SET1Win interactions in restricted
and unrestricted conditions
Next, we asked how immobilization-free (i.e. unrestricted) conditions influence the binding affinities. It is
expected that the equilibrium dissociation constant slightly decreases if both WDR5 and SET1Win move freely
in solution. Hence, we determined equilibrium dissociation constant values using steady-state FP measure-
ments, KD-FP (Materials and Methods) [80–82]. This fluorescence technique monitors changes in the polarity
of the emitted light due to modifications in the rotational diffusion coefficient of a fluorescently labeled ligand.
For example, the formation of the ligand-receptor complex is accompanied by a decline in the rotational mobil-
ity of the ligand, increasing the polarity of the emitted light. Here, Sulforhodamine B, an optically stable and
bright fluorophore [83], was chemically attached to the N terminus of SET1Win via a nine-residue Gly/Ser-rich
flexible spacer, whereas their C terminus was amidated. WDR5 concentration-dependent, steady-state FP
binding curves were collected using a plate reader in a high-throughput setting (Figure 4). In this way, we
determined the immobilization-free KD-FP (Supplementary Table S2). In accord with our anticipation, KD-FP

values were slightly lower than those acquired by SPR, KD-SPR, meaning that WDR5-SET1Win interactions
appeared somewhat stronger when probed in unrestricted conditions.

Table 3 Kinetic and affinity determinations of WDR5-SET1Win interactions using SPR

Peptide sequence kon (M−1 s−1) × 10−5 koff (s
−1) × 103 KD-SPR (nM)

Sulforhodamine B-(GGS)3MLL1Win-NH2 ND1 ND2 16 000 ± 30003

Sulforhodamine B-(GGS)3MLL2Win-NH2 3.7 ± 0.3 12 ± 1 33 ± 2

Sulforhodamine B-(GGS)3MLL3Win-NH2 4.9 ± 0.4 9 ± 1 19 ± 1

Sulforhodamine B-(GGS)3MLL4Win-NH2 2.1 ± 0.3 41 ± 3 190 ± 20

Sulforhodamine B-(GGS)3SETd1AWin-NH2 3.1 ± 0.2 110 ± 10 350 ± 10

Sulforhodamine B-(GGS)3SET1dBWin-NH2 3.4 ± 0.3 24 ± 1 69 ± 6

1kon was not quantitatively determined. Although the WDR5-MLL1Win interactions were detectable using an SPR measurement
(Figure 3), no accurate quantitative determination was made due to the limited time resolution of the approach. In this case, we
assume that the kon was in the same order of magnitude with the kon of other SET1Win peptides (∼105 M−1 s−1);
2koff was not quantitatively determined due to a fast dissociation rate constant. The upper-limit value for the detection of koff is 0.5 s−1

according to instrument specifications. The Biacore 8K+ cannot measure rate constants of dissociation, koff, faster than 0.5 s−1;
3Here, KD-SPR was determined using a steady-state SPR measurement (Supplementary Figure S6);
Values represent mean ± s.d. acquired from at least three independent experimental determinations (separate receptor
immobilizations).
For MLL2Win, n = 4 independent experimental determinations were used.

Figure 4. Steady-state FP curves of the WDR5-SET1Win interactions.

The N terminus of the SET1Win peptides was tagged with sulforhodamine B, whereas the C terminus was amidated. The final

concentration of labeled SET1Win peptides in each well was 10 nM. Three independent experiments were conducted to obtain

the WDR5 dose response.
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The KD-FP values are also in agreement with results of prior ITC measurements (e.g. in immobilization-free
conditions) at either lower [65] or higher salt concentrations [24]. It is worth mentioning that we preferred
replacing Arg by Ser at the C terminus of MLL1Win and MLL4Win to avoid potential rebinding events of the
native Arg at P6 to the WDR5 cavity (Table 1). Regardless, we employed similar peptide sequences and identi-
cal buffer conditions to obtain meaningful comparisons among the three approaches. Then, we have discovered
the following relationship for each WDR5-SET1Win interaction: KD-BLI > KD-SPR > KD-FP (Figure 5;
Supplementary Table S2). In addition, numerical values of KD-FP replicated similar trends noted with different
SET1Win peptides using both BLI and SPR.

Tentative interpretations
The kinetics and affinity measurements of the WDR5-SET1Win interactions were conducted with no significant
variation among independently recorded BLI sensorgrams. The precision of this technique allowed us to quan-
titatively compare kinetics that were within the same order of magnitude. The SET1Win motif is located ∼60
residues N-terminal to the SET domain, both of which are at the C-terminal end of the large SET1 proteins.
These proteins range between ∼1700–5500 amino acids in length. The rotational and diffusional rates of SET1
proteins relative to WDR5 are slow enough that these proteins can be considered as stationary compared with
WDR5. Therefore, a more physiologically-relevant approach that recapitulates the binding of the full-length
SET1 is that in which the 14-residue SET1Win peptide is attached onto a surface, whereas WDR5 is free in solu-
tion. In this way, the actual kon measured by BLI would be conceivably closer to that value in physiological
conditions. In addition, it should be mentioned that SET1Win is physically restrained at both ends when it is
part of the SET1 subunit, suggesting an even lower kon value. However, SET1Win may have stabilized conforma-
tions that promote binding within the context of the large SET1 subunit. In other words, the unrestricted
SET1Win may undergo significantly greater degrees of freedom to adopt numerous non-productive conforma-
tions. Furthermore, binding of SET1 proteins to WDR5 may be coupled with additional interaction pockets
that can amplify the binding strength either by increasing kon or by decreasing koff or both. For example, prior
sedimentation velocity experiments have shown that a 225-residue MLL1Win-containing polypeptide exhibits a
binding affinity of ∼120 nM to WDR5 [22].
kon values measured by SPR are yet at least an order of magnitude lower than those predicted for a protein–

peptide interaction system (107–108 M−1 s−1) [84–88]. Here, WDR5-SET1Win interactions require a precise
insertion of the six-residue, Arg-containing SET1Win peptide into the WDR5 cavity. Therefore, we interpret
that kon values are limited by the entropic penalty determined by the SET1Win partitioning into the Win
binding site. The high-affinity Win binding site features a conical geometry with a maximum internal diameter
of ∼1.5 nm, as measured from side chain to side chain. For example, MLL1Win partitions ∼1.0 nm into the

Figure 5. Quantitative comparisons of dissociation equilibrium constants of WDR5-SET1Win interactions using BLI, SPR,

and steady-state FP measurements.

‘*’ is the upper- limit value for the detection of KD-BLI. This value results from dividing the upper-limit value of the detection of

koff by the value of the kon approximation (Table 2).
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Win binding site (Figure 1) [24]. In support to this interpretation, previous single-molecule studies have shown
that kon values of the interactions of peptides, up to 25 residues in length, with a narrow 2 nm-wide nanopore
are in the order of 105 M−1 s−1 [89,90]. This is the same order of magnitude with kon values that we determined
by SPR.
However, the kon is a composite parameter, which includes contributions of the diffusion-limited rate factor,

kon0, and electrostatic free energy of the WDR5-SET1Win complex, ΔG*el. Zhou and coworkers have demon-
strated that the rate constant of association of two proteins can be accurately computed using the following
expression: kon = kon0 exp(−ΔG*el/kBT), where kB and T are Boltzmann’s constant and the absolute temperature,
respectively [91,92]. For this equation, they employed kinetic-rate theory of rigid-body docking and
Poisson-Boltzmann formalism [93–95]. Using the same approach [93] and crystallographic information of the
WDR5-SET1Win complex [24], we found kon values of several SET1Win peptides (Supplementary Table S3). For
example, computed kon values for MLL2Win and MLL3Win were 2.9 × 105 M−1 s−1 and 1.2 × 105 M−1 s−1,
respectively. These values compare well with our corresponding experimental data determined by SPR, which
were (3.7 ± 0.3) × 105 M−1 s−1 and (4.9 ± 0.4) × 105 M−1 s−1, respectively. Yet, computed kon values for
MLL1Win and MLL4Win were in the order of 104 M−1 s−1. The TransComp server: Web Server for Predicting
Protein Association Rate Constants [91,93] was not able to produce computed kon values for SETd1AWin and
SETd1BWin, likely because these WDR5-SET1Win complex formations do not undergo a single-step association
mechanism. This outcome suggests that the WDR5-SET1Win interactions of SETd1AWin and SETd1BWin

exhibit some subtle structural distinctions with respect to MLL1Win, MLL2Win, MLL3Win, and MLL4Win, which
is in accord with prior crystallographic data [24,65].

Concluding remarks, practical implications, and future prospects
In summary, we present a detailed kinetic fingerprint of the multitasking high-affinity Win binding site of
WDR5, a protein with major regulatory implications in the methylation of H3K4 and in multiple physical asso-
ciations with other proteins. This study reveals slow kinetics of association and dissociation of the SET1Win

peptides with WDR5. It is known that WDR5 bridges the interaction between the SET domain of large SET1
subunits and other WRAD2 constituents. A long-binding time of WDR5-SET1Win interaction, meaning slow
dissociation kinetics of the high-affinity Win binding site, is a pivotal mechanism by which WDR5 assists the
functional integrity of the multisubunit WRAD2 complex. Furthermore, slow dissociation rates detected in this
study point out a fundamental consideration for future therapeutics aimed at targeting interactions of the Win
binding site with other proteins. The stability of these multisubunit complexes would decrease the opportunities
for inhibitors to interfere in WDR5-SET1/MLL interactions. Consequently, this stresses the need for both fast
association rates and slow dissociation rates when designing potential inhibitors to modulate WDR5 function.
Newly designed small-molecule drugs would need to bind strongly to the WDR5 cavity and stave off other
binding partners. Slow dissociation rate constants also reiterate the efficacy of SET1win peptidomimetics as a
fundamental platform for such drugs. Modifications of these sequences that enhance the association rates,
while maintaining the disassociation rates, could be very effective at inhibiting Win binding site interactions. A
good place to start would be the alteration of either the net charge or charge distribution of these peptides for
amplifying the rate constants of association. Any approach employed in this work can be used in the high-
throughput screening of libraries of small-molecule compounds against WDR5-SET1Win interactions. However,
WDR5 is a more relevant target for drug discovery when immobilized onto the SPR sensor, where the free
inhibitor in solution would better mimic in vivo function. This experimental design enables determinations of
kinetic rate constants, contrasting the steady-state FP measurements. Our results also indicate that WDR5 did
not undergo denaturation upon its immobilization onto the SPR sensor. In the future, it would be desirable to
extend these kinetic studies to full-length WRAD2 subunits, because of the suitability of these high-throughput
approaches for examining long-lived protein–protein interactions. For instance, it would be interesting to
conduct SPR measurements, in which a full-length SET1 subunit is immobilized on the chip surface and use
WDR5 as an analyte in solution.
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